FINAL ANSWER KEY

Question Paper Code: 8/2024/OL Exam:KEAM2024 08

Date of Test: 08-06-2024

In the travelling plane wave equation given by $y = A \sin \omega \left(\frac{x}{v} - t\right)$, where ω is the angular 1.

- velocity and v is the linear velocity. The dimension of ωt is
- $LM^{\circ}T^{-1}$ A)
- L°M°T° B)
- L°M°T C)
- LMT D)
- LMT^{-2} E)

Correct Answer: Option B

- Add 2.7×10^{-5} to 4.5×10^{-4} with due regard to significant figures 2.
- 4.8×10^{-4} A)
- 4.7×10^{-5} B)
- 4.8×10^{-5} C)
- 4.7×10^{-4} D)
- 5.0×10^{-4} E)

Correct Answer: Option A

- The length of second's hand in a watch is 1 cm. The magnitude of the change in the 3. velocity of its tip in 30 seconds (in cms-1) is
- A)

Correct Answer: Option D

4. If the slope of the velocity-time graph of a moving particle is zero, then its acceleration is

- A) constant but not zero
- B) zero
- c) constant and is in the direction of velocity
- **D**) not a constant.
- E) constant and is opposite to the direction of velocity

Correct Answer: Option B

A projectile is projected with a velocity of 20 ms⁻¹ at an angle 45° to the horizontal. After

- sometime its velocity vector makes an angle of 30° to the horizontal. Its speed at this instant (in ms⁻¹) is
- A) $10\sqrt{\frac{2}{3}}$
- $B) \quad \frac{20}{\sqrt{3}}$
- c) $20\sqrt{\frac{2}{3}}$
- D) $10\sqrt{2}$
- E) $10\sqrt{3}$

Correct Answer: Option C

- **6.** A boy sitting in a bus moving at a constant velocity throws a ball vertically up into air. The ball will fall
- A) in the bus in front of the boy
- **B**) in the bus on the side of the boy
- c) outside the bus
- **D**) in the hands of the boy
- **E**) in the bus behind the boy

Correct Answer: Option D

- A machine gun fires a bullet of mass 25 g with a velocity of 1000 ms⁻¹. If the man holding the gun can exert a maximum force of 100 N on the gun, the maximum number of bullets that he can fire per second is
- A) 4
- **B**) 12
- **c**) 8
- **D**) 6
- **E**) 3

Correct Answer: Option A

8. When a vehicle moving with kinetic energy **K** is stopped in a distance **d** by applying a stopping force **F** given by

$$F = \frac{K}{d}$$

$$\mathbf{B}) \quad F = Kd$$

$$c_{1} F = \frac{1}{Kd}$$

$$F = \frac{d}{K}$$

$$\mathbf{E}_{\mathbf{j}} \quad F = \frac{d}{K^2}$$

Correct Answer: Option A

- 9. In moving a body of mass m down a smooth incline of inclination θ with velocity v, the power required is (g = acceleration due to gravity)
 - A) mg v
 - B) $(mg\cos\theta)v$
 - c) $(mg\sin\theta)v$
 - D) $\frac{mg\sin\theta}{v}$
 - $\frac{mg\cos\theta}{v}$

Correct Answer : Option C

10. The torque required to increase the angular speed of a uniform solid disc of mass 10 kg and diameter 0.5 m from zero to 120 rotations per minute in 5 sec. is

A)
$$\frac{\pi}{4}$$
 Nm

в)
$$\pi$$
 Nm

c)
$$\frac{\pi}{2}$$
 Nm

D)
$$\frac{\pi}{3}$$
 Nm

E)
$$\frac{3\pi}{4}$$
 Nm

Correct Answer: Option A

- **11.** Radius of gyration K of a hollow cylinder of mass M and radius R about its long axis of symmetry is
- A) 2R
- B) $\frac{R}{2}$

- c) R
- $\frac{R}{4}$
- E) $\frac{3R}{4}$

Correct Answer: Option C

- **12.** The value of escape velocity v_e for a planet depends on
- A) the mass of the body thrown from the planet
- B) the direction of projection of the body
- c) the angle of projection
- **D**) only on the mass of the planet
- its mass M, density ρ and radius of the planet

Correct Answer : Option E

The slope of the graph plotted between square of time period of a planet T^2 and the cube of

13. its mean distance from the sun r^3 is

(G = Gravitational constant, M = Mass of the planet)

- A) $\frac{4\pi^2}{GM}$
- B) $4\pi GM$
- c) $\frac{4\pi G}{M}$
- D) $\frac{4\pi^2 M}{G}$
- E) Zero

Correct Answer : Option A

- 14. If n small identical liquid drops, each having terminal velocity v merge together, then the terminal velocity of the bigger drop is
- A) n^2v
- B) $n^{1/3}v$
- $c_1 = \frac{v}{n}$
- D) *nv*
- E) $n^{2/3}v$

Correct Answer: Option E

- **15.** A fluid has stream line flow through a horizontal pipe of variable cross-sectional area. Then
- A) its velocity is minimum at the narrowest part of the tube and the pressure is minimum at the widest point
- B) its velocity and pressure both are maximum at the widest point
- c) its velocity and pressure both are minimum at the narrowest point
- D) its velocity is maximum at the narrowest point and the pressure is maximum at the widest part
- E) its velocity is maximum and pressure is minimum at the narrowest point

Correct Answer:-Question Cancelled

A metal rod of length 1 m at 20°C is made up of a material of coefficient of linear expansion

- 16. 2×10^{-5} /°C. The temperature at which its length is increased by 1 mm is
- A) 45 °C
- в) 70°C
- c) 65 °C
- D) 60 °C
- E) 50 °C

Correct Answer: Option B

The ends of a metallic rod are at temperatures T₁ and T₂ and the rate of flow of heat through

- 17. it is Q Js⁻¹. If all the dimensions of the rod are halved keeping the end temperatures constant, the new rate of flow of heat will be
- A) 2Q
- B) $\frac{Q}{8}$
- c) $\frac{Q}{4}$
- D) $\frac{Q}{2}$
- E) Q

Correct Answer: Option D

The rate of emission of a perfectly black body at temperature 27°C is E_1 . If the temperature

- 18. of the body is raised to 627°C, its rate of emission becomes E_2 . The ratio of $\frac{E_1}{E_2}$ is
- A) $\frac{1}{81}$
- B) $\frac{1}{16}$
- c) $\frac{1}{25}$
- D) $\frac{1}{36}$

E) $\frac{1}{49}$

Correct Answer: Option A

A monoatomic ideal gas of 'n' moles heated from temperature T_1 to T_2 under two different

- 19. conditions (i) at constant pressure (ii) at constant volume. The change in the internal energy of the gas is
- A) more in process (ii)
- B) more in process (i)
- c) same in both the processes
- D) zero
- E) proportional to $\frac{T_1 + T_2}{2}$

Correct Answer : Option C

- 20. The ratio between the root mean square velocities of O_2 and O_3 molecules at the same temperature is
- A) 3:2
- B) 2:3
- c) 1:1
- D) $\sqrt{3}:\sqrt{2}$
- E) $\sqrt{2}:\sqrt{3}$

Correct Answer: Option D

- A particle is executing linear simple harmonic oscillation with an amplitude of A. If the total energy of oscillation is *E*, then its kinetic energy at a distance of 0.707 A from the mean position is
- A) $\frac{E}{2}$
- B) $\frac{E}{4}$
- c) $\frac{3E}{4}$
- D) $\frac{E}{4}$
- E) E

Correct Answer: Option A

The equation of a stationary wave is given by

 $y = 5\sin\frac{\pi x}{2}\cos 10\pi t \text{ cm}$

The distance between two consecutive nodes (in cm) is

- **A**) 5
- B) 2
- **c**) 8
- **D**) 1
- **E**) 6

Correct Answer: Option B

- **23.** A thin spherical shell of radius 12 cm is charged such that the potential on its surface is 60 V. Then the potential at the centre of the sphere is
- A) 5 V
- B) Zero
- **c**) 30 V
- **D**) 120 V
- **E**) 60 V

Correct Answer: Option E

- A stationary body of mass 5 g carries a charge of $5 \mu C$. The potential difference with which it should be accelerated to acquire a speed of 10 ms^{-1} is
- **A)** 4 kV
- **B**) 25 kV
- **c**) 50 kV
- **D**) 40 kV
- E) 2 kV

Correct Answer: Option C

- 25. An electric dipole of dipole moment p is kept in a uniform electric field E such that it is aligned parallel to the field. The energy required to rotate it by 45° is
- A) $\underline{p}\underline{E}$
- B) $pE\frac{(\sqrt{2}+1)}{\sqrt{2}}$
- c) $pE\frac{(\sqrt{2}-1)}{\sqrt{2}}$
- D) $\frac{pE}{\sqrt{2}}$
- E) $\sqrt{2}pE$

Correct Answer: Option C

- **26.** A steady current of 2A is flowing through a conducting wire. The number of electrons flowing per second in it is
- A) 1.25×10^7
- B) 1.25×10¹⁹

c) 2.50×10^{10}

 0.125×10^{25}

E) 2.5×10^{17}

Correct Answer: Option B

If the voltage across a bulb rated 220V - 60~W drops by 1.5% of its rated value, the percentage drop in the **27.** rated value of the power is

A) 0.75%

B) 1.5%

c) 4.5%

D) 3%

E) 2.5%

Correct Answer: Option D

The terminal potential difference of a cell in the open circuit is 2 V. When the cell is 28. connected to a 10Ω resistor, the terminal potential difference falls to 1.5 V. The internal resistance of the cell is

A) $\frac{10}{3}\Omega$

B) $\frac{10}{9}\Omega$

c) $\frac{20}{7}\Omega$

D) $\frac{15}{6}\Omega$

E) $\frac{13}{2}\Omega$

Correct Answer: Option A

29. For a linear material, the relation between the relative magnetic permeability μ_r and magnetic susceptibility χ is (μ = magnetic permeability)

 λ $\chi = \mu_r + 1$

 $\mu_r = \mu_r - 1$

 c_1 $\chi = \mu \mu_r$

D) $\mu-1$

E) $\chi = \mu + 1$

Correct Answer: Option B

- The magnetic field at the centre of a circular coil having single turn of the wire carrying current I is B. The magnetic field at the centre of the same coil with 4 turns carrying the same current is
- **A**) 16B
- **B**) 8B
- c) 4B
- D) $\frac{B}{2}$
- E) $\frac{B}{4}$

Correct Answer: Option A

A current carrying square loop is suspended in a uniform magnetic field acting in the plane 31. of the loop. If \vec{F} is the force acting on one arm of the loop, then the net force acting on the remaining three arms of the loop is

- A) $-3\vec{F}$
- B) $3\vec{F}$
- C) $ec{F}$
- D) $-\vec{F}$
- E) $-\frac{1}{2}\vec{F}$

Correct Answer: Option D

- **32.** If the magnetic field energy stored in an inductor changes from maximum to minimum value in 5 ms, when connected to an a.c. source, the frequency of the a.c. source is
- **A)** 200 Hz
- **B**) 500 Hz
- **c**) 50 Hz
- **D**) 20 Hz
- **E**) 100 Hz

Correct Answer: Option C

- **33.** In an LCR circuit, at resonance, the value of the power factor is
- A)
- **B**) 0
- **c**) 0.5
- **D**) 0.75
- E) infinity

Correct Answer: Option A

An electromagnetic wave is propagating in a medium with velocity $\vec{v} = v\hat{i}$. The

- **34.** instantaneous oscillating magnetic field of this electromagnetic wave is along positive z direction. Then the direction of oscillating electric field is in the
- **A**) positive *x* direction

- **B**) negative *x* direction
- c) positive y direction
- **D**) negative y direction
- E) negative z direction

Correct Answer: Option C

- 35. When light is reflected from an optically rarer medium
- A) its phase remains unchanged but its frequency increases
- B) both its phase and frequency remain unchanged
- c) its phase changes by π but the frequency remains unchanged
- D) its phase remains the same but the frequency decreases
- its phase changes by $\pi/2$ but the frequency remains unchanged

Correct Answer: Option B

Focal length of a convex lens of refractive index 1.5 is 3 cm. When the lens is immersed in

- **36.** water of refractive index $\frac{4}{3}$, its focal length will be
 - **A)** 3 cm
- **B**) 10 cm
- **c**) 12 cm
- **D**) 1.5 cm
- **E**) 6 cm

Correct Answer: Option C

- A narrow single slit of width d is illuminated by white light. If the first minimum for violet light ($\lambda = 4500 \text{ Å}$) falls at $\theta = 30^\circ$, the width of the slit d in microns is (1 micron = 10^{-6} m)
- **A)** 0.4
- **B**) 0.5
- **c**) 0.3
- **D**) 0.7
- **E**) 0.9

Correct Answer: Option E

- Threshold frequency for photoelectric effect from a metallic surface corresponds to a wavelength of 6000 Å. The photoelectric work function for the metal is $(h = 6.6 \times 10^{-34} \text{ Js})$
- A) $1.5 \times 10^{-19} \text{ J}$
- B) $2.7 \times 10^{-18} \text{ J}$
- c) $5.4 \times 10^{-18} \,\mathrm{J}$
- D) $4.5 \times 10^{-19} \text{ J}$
- $3.3 \times 10^{-19} \text{ J}$

Correct Answer: Option E

A proton and a photon have the same energy. Then the de-Broglie wavelength of proton λ_p

- **39.** and wavelength of photon λ_0 are related by
- A) $\lambda_0 \propto \frac{1}{\sqrt{\lambda_p}}$
- $_{\mathrm{B}}$) $\lambda_0 \propto \sqrt{\lambda_p}$
- c) $\lambda_0 \propto \lambda_p$
- D) $\lambda_0 \propto \lambda_p^2$
- E) $\lambda_0 \propto \frac{1}{\lambda_p}$

Correct Answer: Option D

- **40.** Bohr atom model is invalid for
- A) Hydrogen atom
- B) doubly ionized helium atom
- c) deuteron atom
- **D**) singly ionized helium atom
- E) doubly ionized lithium atom

Correct Answer: Option B

- **41.** The energy equivalent of 1 g of a substance in joules is
 - A) 9×10^{13}
 - B) 4.5×10^{13}
 - c) $1\times10^{13}\,$
 - D) 0.5×10^{13}
 - E) 2.25×10^{13}

Correct Answer: Option A

- 42. Mass numbers of two nuclei are in the ratio 2:3. The ratio of the nuclear densities would be
- A) $2:3^{1/3}$
- B) $3^{1/3}:2$
- c) 2:3
- D) 3:2
- E) 1:1

Correct Answer : Option E

Four hydrogen atoms combine to form an ${}_{2}^{4}He$ atom with a release of 26.7 MeV of energy. 43. This is fission reaction A) β^+ emission B) β^{-} emission C) γ emission D) fusion reaction Correct Answer: Option E In the circuit given below, the current is 44. 0.10 A A) $10^{-3} \, \text{A}$ B) 0.5 A 1 A 0ACorrect Answer: Option E **45.** Electric conduction in a semiconductor is due to holes only electrons only B) neither holes nor electrons C) D) both electrons and holes recombination of electrons and holes **Correct Answer:-Question Cancelled** 260 g of an aqueous solution contains 60 g of urea (Molar mass = 60 g mol⁻¹). The molality of the solution 46. is 2m A) 3m B) 4m C) 5m D) 6m Correct Answer: Option D **47.** Which of the following pair exhibits diagonal relationship? Li and Mg A) Li and Na B) Mg and Al C) B and P D) C and CI

Correct Answer: Option A

- 48. The molecule which has see saw in structure is
- A) NH₃
- B) SF₄
- c) CCI₄
- D) SiCl₄
- E) BrF₅

Correct Answer: Option B

- **49.** The quantum number which determines the shape of the subshell is
 - A) Principal quantum number
 - B) Magnetic quantum number
 - c) Azimuthal quantum number
 - **D**) Spin quantum number
 - E) Principal and magnetic quantum number

Correct Answer: Option C

The total enthalpy change when 1 mol of water at 100°C and 1 bar pressure is converted to ice at 0°C is -----.

- (Enthalpy of fusion of ice = 6.00 kJ mol^{-1} , heat capacity of water = $4.2 \text{ J K}^{-1} \text{ g}^{-1}$, molar mass of $H_2O = 18 \text{ g mol}^{-1}$)
- A) -7.56 kJ mol⁻¹
- B) -6.00 kJ mol⁻¹
- c) -13.56 kJmol⁻¹
- D) -756 kJ mol⁻¹
- E) -1.356 kJ mol⁻¹

Correct Answer : Option C

- 51. The balanced ionic equation for the reaction of K₂Cr₂O₇ with Na₂SO₃ in an acid solution is
- A) $Cr_2O_7^{2-}(aq) + SO_3^{2-}(aq) + 8H^+(aq) \rightarrow 2Cr^{3+}(aq) + SO_4^{2-}(aq) + 4H_2O(1)$
- B) $Cr_2O_7^{2-}(aq) + 3SO_3^{2-}(aq) + 2H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(1)$
- $3Cr_2O_7^{2-}(aq) + 3SO_3^{2-}(aq) + 8H^+(aq) \rightarrow 6Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(1)$
- D) $3Cr_2O_7^{2-}(aq) + 3SO_3^{2-}(aq) + 2H^+(aq) \rightarrow 3Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(1)$
- E) $Cr_2O_7^{2-}(aq) + 3SO_3^{2-}(aq) + 8H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + 4H_2O(1)$

Correct Answer: Option E

- **52.** The limiting molar conductances of NaCl, HCl and CH₃COONa at 300 K are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. The limiting molar conductance of acetic acid at 300 K is
- A) 266 S cm² mol⁻¹
- **B**) 390.5 S cm² mol⁻¹

- C) 461.3 S cm² mol⁻¹
- D) 208 S cm² mol⁻¹
- E) 108 S cm² mol⁻¹

Correct Answer: Option B

- **53.** Which of the following liquid pair shows negative deviation from Raoult's law?
- A) Phenol Aniline
- B) Acetone Carbon disulphide
- c) Benzene Toluene
- **D**) n-hexane n-heptane
- E) Bromoethane Chloroethane

Correct Answer: Option A

- **54.** The half-life period of a first order reaction is 1000 seconds. Its rate constant is
- **A)** 0.693 sec^{-1}
- **B**) $6.93 \times 10^{-2} \text{ sec}^{-1}$
- **c**) $6.93 \times 10^{-3} \text{ sec}^{-1}$
- **D**) $6.93 \times 10^{-4} \text{ sec}^{-1}$
- E) 6.93 x 10⁻¹ sec⁻¹

Correct Answer: Option D

- 55. Which of the following material acts as a semiconductor at 298 K?
- A) Iron
- B) Copper oxide
- c) Sodium
- **D**) Graphite
- E) Glass

Correct Answer: Option B

- The resistance of a conductivity cell filled with 0.02 M KCl solution is 520 ohm at 298 K. The conductivity of the solution at 298 K is (Cell constant = 130 cm⁻¹)
- **A)** 0.50 S cm⁻¹
- **B**) 1.25 S cm⁻¹
- **C**) 0.025 S cm⁻¹
- **D**) 0.25 S cm⁻¹
- E) 0.75 S cm⁻¹

Correct Answer: Option D

- **57.** For the equilibrium at 500 K, $N_{2 (g)} + 3H_{2 (g)} \rightleftharpoons 2NH_{3 (g)}$, the equilibrium concentrations of $N_{2 (g)}$, $H_{2 (g)}$ and $NH_{3 (g)}$ are respectively 4.0 M, 2.0 M and 2.0 M. The Kc for the formation of NH_{3} at 500 K is
- **A)** $1/16 \text{ mol}^{-2} \text{ dm}^6$
- **B**) $1/32 \text{ mol}^{-2} \text{ dm}^{6}$
- $^{\circ}$ 1/8 mol⁻² dm⁶
- **D**) $1/4 \text{ mol}^{-2} \text{ dm}^6$
- **E**) $1/2 \text{ mol}^{-2} \text{ dm}^{6}$

Correct Answer: Option C

- **58.** The molarity of a solution containing 8 g of NaOH (Molar mass = 40 g mol⁻¹) in 250 mL solution is
- **A**) 0.8M
- **B**) 0.4M
- **c**) 0.2M
- **D**) 0.5M
- **E**) 0.6M

Correct Answer: Option A

- **59.** Which of the following are the conditions for a reaction spontaneous at all temperatures?
- A) $\Delta_r H > 0$; $\Delta_r S > 0$
- B) $\Delta_r H < 0$; $\Delta_r S > 0$
- c) $\Delta_r H < 0$; $\Delta_r S < 0$
- D) $\Delta_r H = 0$; $\Delta_r S < 0$
- $\Delta_r H = 0$; $\Delta_r S = 0$

Correct Answer: Option B

- 60. Transition elements act as catalyst because
- A) their melting points are high
- B) their ionization potential values are high
- c) they have high density
- **D**) they show variable oxidation state
- E) they have high electronegativity

Correct Answer: Option D

- **61.** Lanthanides (Ln) burn in O₂ to give
- A) LnO
- B) $Ln(OH)_3$
- c_1 Ln₂O₃
- D) LnO₂
- E) LnO₃

Correct Answer: Option C

- **62.** The IUPAC name of the coordination compound $Hg[Co(SCN)_4]$ is
- A) Mercury (I) tetrathiocyanato-S-cobaltate (III)
- **B**) Mercury (II) tetrathiocyanato-S-cobaltate(II)
- c) Mercury (I) tetrathiocyanato-S-cobaltate (IV)
- D) Mercury (II) tetraisocyanato-S-cobaltate (III)
- E) Mercury (I) tetraisocyanato-N-cobaltate (III)

Correct Answer: Option B

- 63. In a combustion reaction, heat change during the formation of 40 g of carbon dioxide from carbon and dioxygen gas is (Enthalpy of combustion of carbon = -396 kJ mol⁻¹)
- **A**) 320 kJ
- **B**) -320 kJ

- **c**) -360 kJ
- **D**) 360 kJ
- **E**) 240 kJ

Correct Answer: Option C

- **64.** Which of the following statement is incorrect?
- A) Hyperconjugation is a permanent effect.
- B) Tertiary carbocation is relatively more stable than a secondary carbocation.
- c) F has stronger -I effect than Cl.
- **D**) Inductive effect decreases with increasing distance.
- **E**) When inductive and electromeric effects operate in opposite directions, the inductive effect predominates.

Correct Answer: Option E

- **65.** Which of the following statement is incorrect with regard to ozonolysis?
- A) It involves addition of ozone on alkene.
- **B**) An unsymmetrical alkene gives two different carbonyl compounds.
- c) It is used to identify the number of double bonds in starting material.
- **D**) It cannot be used to detect the position of the double bonds.
- E) Ozonide will undergo cleavage by Zn-H₂O.

Correct Answer: Option D

- **66.** Which of the following statement is true?
- A) Dehydration of alcohol takes place in presence of HCl/ZnCl₂.
- B) Formation of ethene from ethyl iodide occurs on heating with aqueous KOH.
- c) Hydrogenation of an unsymmetrical alkyne in presence of Pd/C gives *cis* alkene.
- D) Hydrogenation of an unsymmetrical alkyne in presence of Na/liq.NH₃ gives *cis*-alkene.
- E) The order of reactivity of hydrogen halides towards alkenes is HI < HBr < HCl.

Correct Answer: Option C

- An organic compound X (C_6H_6O) on reaction with zinc dust gives 'Y'. The product 'Y' reacts CH_3COCI in presence of anhydrous $AICI_3$ to give 'Z' (C_8H_8O). The compounds X, Y and Z are respectively
- A) benzaldehyde, benzene, methyl phenyl ketone
- B) phenol, benzene, acetophenone
- c) phenol, naphthalene, acetophenone
- **D**) benzene, phenol, diphenyl ketone
- E) cyclohexanol, cyclohexane, benzophenone

Correct Answer: Option B

- **68.** The percentage amylose in starch is about
- **A**) 40-50 %
- B) 80-85 %
- **c**) 60-80 %
- **D**) 50-60 %
- E) 15-20%

Correct Answer: Option E

- 69. Which of the following statement is correct?
- A) Bromination of phenol in CS₂ at low temperature give 2,4,6-tribromophenol.

- B) Oxidation of phenol with chromic acid gives benzene.
- c) Conversion of phenol into tribromophenol by bromine water is a nucleophilic substitution reaction.
- **D**) p-Nitrophenol is steam volatile due to intermolecular hydrogen bonding.
- **E**) The intermediate in Riemer-Tiemann reaction is substituted benzal chloride.

Correct Answer: Option E

- **70.** On heating an aldehyde with Fehling's reagent, a reddish-brown precipitate is obtained due to the formation of
- A) cupric oxide
- B) cuprous oxide
- c) carboxylic acid
- D) silver
- E) copper acetate

Correct Answer: Option B

- 71. The decreasing order of basic strength of amines in aqueous medium is
 - A) $CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N > NH_3$
 - B) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$
 - c) $(CH_3)_2NH > (CH_3)_3N > CH_3NH_2 > NH_3$
 - D) $(CH_3)_2NH > NH_3 > (CH_3)_3N > CH_3NH_2$
 - E) $NH_3 > CH_3NH_2 > (CH_3)_3N > (CH_3)_2NH$

Correct Answer: Option B

- **72.** Which of the following statement is correct?
 - A) Sucrose is laevorotatory.
 - B) Fructose is a disaccharide.
 - c) Sucrose on hydrolysis gives D(+)-glucose only.
 - **D**) Sucrose is made up of a glycosidic linkage between C1 of α -D-glucose and C2 of β -D-Fructose.
 - E) Sucrose is a reducing sugar.

Correct Answer: Option D

- **73.** The structure of MnO_4^- ion is
- A) square planar
- B) octahedral
- c) trigonal pyramid
- D) pyramid
- E) tetrahedral

Correct Answer: Option E

- 74. When benzene diazonium fluoroborate is heated with aqueous sodium nitrite solution in the presence of copper, the product formed is
- A) fluorobenzene
- B) benzene
- c) aniline
- **D**) nitrobenzene
- E) phenol

Correct Answer: Option D

75. A fibrous protein present in muscles is

- A) keratin
- B) albumin
- c) riboflavin
- **D**) insulin
- E) myosin

Correct Answer: Option E

76. Let *P* and *Q* be two finite sets having 3 elements each. The total number of mappings from *P* to *Q* is

- A) 32
- **B**) 516
- **c**) 6
- **D**) 9
- E) 27

Correct Answer: Option E

If f(x) = [x], where [x] denotes the greatest integer function, and if the domain of f is $\{-3.01, 2.99\}$, then the range of f is

- A) $\{-3, 3\}$
- B) $\{-4, 3\}$
- $c_1 = \{-3, 2\}$
- D) $\{-4, 2\}$
- $= \{-2, 3\}$

Correct Answer : Option D

78. The domain of the function $f(x) = \sqrt{7 - 8x + x^2}$ is

- A) $(-\infty,1] \cup (7,\infty)$
- $_{\mathsf{B}})\quad \left(-\infty,1\right]\cup\left[7,\infty\right)$
- c) $\left(-\infty,1\right)\cup\left[7,\infty\right)$
- D) $\left(-\infty,-1\right]\cup\left[7,\infty\right)$
- $(-\infty, -7] \cup [1, \infty)$

Correct Answer: Option B

79. The period of the function $\sin\left(\frac{\pi x}{4}\right)$ is

- A) 4
- B) 4π
- c) 8π

- D) 8
- E) 2π

Correct Answer: Option D

- **80.** If f(x) = x + 8, and $g(x) = 2x^2$, then $(g \circ f)(x)$ is equal to
- A) $(2x+8)^2$
- B) $2(x+8)^2$
- c) $2x^2 + 8$
- D) $2x^2 + 64$
- $= 2x^3 + 8x$

Correct Answer: Option B

- **81.** If $f(x) = \frac{x}{1-x}$, $x \ne 1$, then the inverse of f is
- $A) \qquad \frac{1-x}{1+x}, x \neq -1$
- B) $\frac{1}{1+x}$, $x \neq -1$
- $c) \quad \frac{1-x}{x}, x \neq 0$
- D) $\frac{x}{1+x}$, $x \neq -1$
- $\mathsf{E}) \quad \frac{1+x}{1-x}, \ x \neq 1$

Correct Answer: Option D

If the complex numbers (2+i)x + (1-i)y + 2i - 3 and x + (-1+2i)y + 1+i are equal,

82.

then (x, y) is

- **A**) (1,-2)
- B) (-1,2)
- **c**) (2,-1)
- D) (2,-2)
- E) (2,1)

Correct Answer : Option E

- **83.** If $x + iy = \frac{3 + 4i}{5 12i}$, then x + y is equal to
 - A) $\frac{23}{169}$
 - B) $\frac{56}{169}$

$$c_1 - \frac{15}{169}$$

D)
$$\frac{15}{169}$$

E)
$$\frac{71}{169}$$

Correct Answer: Option A

84. If z = 1 + i, then the maximum value of |z + 12 + 9i| is

- A) 225
- B) 265
- **c**) 269
- **D**) 200
- E) $\sqrt{265}$

Correct Answer:-Question Cancelled

85. If $\left| \frac{z-5i}{z+5i} \right| = 1$, then

A)
$$Re(z) = 0$$

B)
$$|z| = 10$$

c)
$$|z| = 25$$

D)
$$|z|=5$$

E)
$$\operatorname{Im}(z) = 0$$

Correct Answer: Option E

86. The coefficient of x^7 in the expansion of $\left(\frac{1}{x} + x^2\right)^8$ is

- **A)** 70
- B) 28
- c) 42
- **D**) 56
- E) 8

Correct Answer: Option D

87. If $a_1 = 3$ and $a_n = na_{n-1}$, for $n \ge 2$, then a_6 is equal to

- A) 72
- B) 144
- **c**) 720
- **D**) 2160
- E) 4320

Correct Answer: Option D

88. If $\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x} + \frac{1}{\log_6 x} = 1$, then the value of x is equal to

- **A**) 18
- **B**) 36
- **c**) 120
- **D**) 360
- E) 720

Correct Answer: Option E

89. The common ratio of a G.P. is 10. Then the ratio between its 11th term and its 6th term is

- A) $10^6:1$
- B) $10^5:1$
- $c) 10^4:1$
- $D) 10^{11}:1$
- E) $10^3:1$

Correct Answer: Option B

90. Let a, b, c be positive numbers. If $a+b+c \ge K[(a+b)(b+c)(c+a)]^{1/3}$, then the maximum value of K is

- A) $\frac{3}{2}$
- $\mathsf{B}) \quad \frac{1}{2}$
- c) $\frac{1}{4}$
- D) $\frac{1}{8}$
- E) 1

Correct Answer: Option A

91. If $A = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix}$ and $A^2 = A$, then the value of x is

- **A**) -8
- **B**) -3
- **c**) 0
- **D**) 3
- E) 8

Correct Answer: Option B

92. If $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$, then $A^2(\text{adj}A)$ is

A)

- B) 4*I*
- c) 2A
- D) 3A
- E) A

Correct Answer: Option E

- **93.** If $|x-2| \le 4$, then x lies in the interval
 - A) $\left(-\infty, -2\right)$
 - B) $\left(-\infty,0\right)$
 - c_{1} [-2,6]
 - D) $\left[-2,\infty\right)$
 - (-2,4)

Correct Answer: Option C

- **94.** If $\tan\left(\frac{\pi}{12} + 2x\right) = \cot 3x$, where $0 < x < \frac{\pi}{2}$, then the value of x is
 - A) $\frac{\pi}{12}$
 - B) $\frac{\pi}{3}$
 - c) $\frac{\pi}{4}$
 - D) $\frac{\pi}{6}$
 - E) $\frac{\pi}{24}$

Correct Answer: Option A

- **95.** If $\cos \theta + \sin \theta = \sqrt{2}$, then $\cos \theta \sin \theta$ is equal to.
 - A) (
 - B) -1/2
 - c) 1/2
 - D) 1/4
 - E) 1

Correct Answer: Option A

- **96.** The value of $\cos 26^{\circ} + \cos 54^{\circ} + \cos 126^{\circ} + \cos 206^{\circ} + \cos 240^{\circ}$ is.
 - A) (
 - B) 1
 - **c**) -1/2

- **D**) 1/2
- **E**) -1

Correct Answer: Option C

- **97.** If $\cos x \sin x = 0$, $0 \le x \le \pi$, then the value(s) of x is/are
- A) $\frac{\pi}{4}, \frac{3\pi}{4}$
- $\mathsf{B})\quad \frac{\pi}{4},\frac{5\pi}{4}$
- c) $\frac{\pi}{4}$
- D) $\frac{5\pi}{4}$
- E) $\frac{3\pi}{4}$

Correct Answer: Option C

- **98.** If $2\sin\left(\frac{\pi}{3} 2x\right) 1 = 0$, $0 < x < \frac{\pi}{2}$, then the value of x is
- A) $\frac{\pi}{4}$
- B) $\frac{\pi}{3}$
- c) $\frac{5\pi}{12}$
- D) $\frac{\pi}{12}$
- E) $\frac{\pi}{6}$

Correct Answer: Option D

- **99.** Domain of the function $\sin^{-1}(2x-1)$ is
 - $\mathbf{A}) \quad \left[0,1\right]$
 - B) [0,∞]
 - c) $\left[-\infty,1\right]$
 - D) [1,∞]
 - E) $\begin{bmatrix} -1,1 \end{bmatrix}$

Correct Answer: Option A

100. If $3 \tan^{-1} x + \cot^{-1} x = \pi$ then $\sin^{-1} x$ is

- B) $\frac{\pi}{3}$
- c) $\frac{\pi}{4}$ D) $\frac{\pi}{6}$

Correct Answer: Option E

- **101.** $\tan^{-1} 2 \tan^{-1} \left(\frac{1}{3}\right)$ is equal to
- B) $\frac{\pi}{3}$

- E)

Correct Answer: Option C

- **102.** $\sin^{-1} \left(\sin \left(\frac{5\pi}{6} \right) \right)$ is equal to

Correct Answer: Option B

- **103.** If $\sin x = \frac{3}{5}$, then the value of $\sec x + \tan x$ is equal to
 - -2 A)
 - 3 B)
- 0 C)

- D) 2
- **E**) -3

Correct Answer: Option D

104. If P(-3,4) and Q(3,1) are points on a straight line, then the slope of the straight line perpendicular to PQ is

- **A**)
- **B**) -2
- **c**) 2
- **D**) -1
- E) $\sqrt{3}$

Correct Answer: Option C

105. The length of perpendicular from the origin to the line $\frac{x}{5} - \frac{y}{12} = 1$, is

- A) $\frac{60}{13}$
- B) $\frac{5}{12}$
- c) $\frac{12}{5}$
- D) $\frac{13}{12}$
- E) $\frac{13}{60}$

Correct Answer: Option A

106. The equation of the straight line passing through the point (1,1) and perpendicular to the line x + y = 5, is

- A) x-y=2
- \mathbf{B}) x-y=0
- c) x-y=-2
- D) x+y=2
- $E) \quad x+y=0$

Correct Answer: Option B

The area of the triangle formed by the coordinate axes and a line whose perpendicular from **107.** the origin makes an angle 45° with the x-axis is 50 square units. Then the equation of the line is

- A) x + y = 10
- B) x + 2y = 10

- $c) \quad 2x + y = 5$
- x + y = 25
- E) x+y=5

Correct Answer: Option A

108. The equation of the straight line, intersecting the coordinate axes x and y are respectively 1 and 2, is

- A) x+y=3
- **B**) x-2y=-3
- **c**) 2x-y=0
- **D**) 2x+y=2
- E) x-y=-1

Correct Answer: Option D

109. If the sum of distances of a point from the origin and the line x = 3 is 8, then its locus is

A)
$$y^2 - 10x + 25 = 0$$

B)
$$y^2 + 10x + 25 = 0$$

c)
$$v^2 - 10x - 25 = 0$$

D)
$$y^2 - 25x + 10 = 0$$

$$y^2 + 25x - 10 = 0$$

Correct Answer: Option C

110. If the point (2, k) lies on the circle $(x-2)^2 + (y+1)^2 = 4$, then the value of k is

- **A**) 1,3
- B) 1,2
- **c**) -1,3
- **D**) 2,3
- E) 1,-3

Correct Answer: Option E

111. The radius of the circle $x^2 + y^2 - 2x - 4y - 4 = 0$ is

- A) 2
- **B**) 3
- c) 4
- **D**) 5
- **E**) 6

Correct Answer: Option B

The eccentricity of an ellipse is $\frac{1}{3}$ and its centre is at the origin. If one of the directrices is 112.

x = 9, then the equation of the ellipse is

A)
$$8x^2 + 9y^2 = 32$$

B)
$$8x^2 + 9y^2 = 36$$

c)
$$9x^2 + 8y^2 = 36$$

$$9x^2 + 8y^2 = 32$$

E)
$$8x^2 + 9y^2 = 72$$

Correct Answer: Option E

If the parametric form of the circle is $x = 3\cos\theta + 3$ and $y = 3\sin\theta$, then the Cartesian 113.

form of the equation of the circle is

A)
$$x^2 + y^2 + 6x = 0$$

B)
$$x^2 + y^2 - 6x = 9$$

c)
$$x^2 + y^2 + 6x = 9$$

D)
$$x^2 + y^2 - 6x = 0$$

E)
$$x^2 + y^2 - 6x - 2y - 9 = 0$$

Correct Answer : Option D

114. A line makes angle α , β , γ with x, y and z-axis respectively. Then the value of $\sin^2 \alpha + \sin^2 \beta - \cos^2 \gamma$ is

- A) 3
- B) 2
- **c**) 1
- D) $\frac{3}{2}$
- **E**) 0

Correct Answer: Option C

115. The direction ratios of the line joining the points (2, 3, 4) and (-1, 4, -3) is

A)
$$\pm (3,-1,7)$$

$$\pm (-3,-1,7)$$

$$c_1 = \pm (3, 1, 7)$$

$$\pm (3,-1,-7)$$

E)
$$\pm (-3,1,7)$$

Correct Answer : Option A

Equation of the line parallel to the line $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ and passing through the point **116**.

$$(3, 2, -1)$$
 is

A)
$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z+1}{2}$$

B)
$$\frac{x+3}{2} = \frac{y+2}{3} = \frac{z-1}{-2}$$

c)
$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$$

D)
$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z+1}{-2}$$

E)
$$\frac{x+3}{2} = \frac{y+2}{3} = \frac{z+1}{-2}$$

Correct Answer: Option D

- 117. If the lines $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{\alpha}$ and $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{-2}$ are perpendicular, then the value of α is
- A) 6
- B) 4
- **c**) 3
- **D**) -3
- E) -2

Correct Answer: Option C

- 118. If $\vec{a} = 2\vec{i} + 4\vec{j} + 7\vec{k}$ and $\vec{b} = 4\vec{i} + 7\vec{j} + 2\vec{k}$, then the angle between $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ is equal to
- A) $\frac{\pi}{4}$
- B) $\frac{\pi}{3}$
- c) $\frac{\pi}{2}$
- D) $\frac{2\pi}{3}$
- E) $\frac{2\pi}{5}$

Correct Answer: Option C

119. A vector of magnitude 6 and perpendicular to $\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$ and $\vec{b} = \vec{i} - 2\vec{j} + 2\vec{k}$, is

A)
$$\pm \left(2\vec{i}-\vec{j}-2\vec{k}\right)$$

B)
$$\pm 2(2\vec{i} - \vec{j} + 2\vec{k})$$

c)
$$\pm 3\left(2\vec{i}-\vec{j}-2\vec{k}\right)$$

D)
$$\pm 2\left(2\vec{i} + \vec{j} - 2\vec{k}\right)$$

E)
$$\pm 2\left(2\vec{i}-\vec{j}-2\vec{k}\right)$$

Correct Answer: Option E

120. If \vec{a} and \vec{b} are non collinear unit vectors and $\left| \vec{a} + \vec{b} \right|^2 = 3$, then $(3\vec{a} + 2\vec{b}) \cdot (3\vec{a} - \vec{b})$ is equal

- A) $\frac{32}{3}$
- B) $\frac{17}{2}$
- c) 15
- D) 7
- E) $\frac{17}{4}$

Correct Answer: Option B

If x_i , i = 1, 2, 3, ..., n are n observations such that $\sum_{i=1}^{n} x_i^2 = 550$, mean $\overline{x} = 5$ and variance is 121.

zero, then the number of observations is equal to

- **A**) 30
- B) 25
- C) 22
- **D**) 16
- E) 4

Correct Answer: Option C

122. If the mean of five observations x, 2x + 5, 13, 2x - 7, and 9 is 22, then the value of x is

- **A**) 20
- **B**) 15
- **c**) 10
- **D**) 12
- E) 18

Correct Answer: Option E

123. If A and B are two independent events such that P(A) = 0.4 and $P(A \cup B) = 0.7$, then P(B) is equal to

- **A)** 0.3
- **B**) 0.4
- **C**) 0.5
- **D**) 0.6
- **E**) 0.7

Correct Answer: Option C

124. The probability that at least one of A or B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then P(A') + P(B') is

- **A)** 0.7
- B) 1.5
- c) 1.1

Correct Answer: Option D

125.
$$\lim_{x\to 0} \left(\frac{\sin 5x}{\sin 3x}\right)$$
 is equal to

A)
$$\frac{3}{5}$$

B)
$$\frac{5}{3}$$

Correct Answer: Option B

126. The value of $\lim_{x\to 1} \frac{x^2+2x-3}{x-1}$ is equal to

Correct Answer: Option B

127. If
$$f(x) = \frac{1}{2-x}$$
, $g(x) = \frac{1}{1-x}$, then the point(s) of discontinuity of the function $g(f(x))$ is (are)

A)
$$x=2$$

$$B) \qquad x = 3$$

c)
$$x = 2, x = 3$$

$$x = 2, x = 1$$

E)
$$x = 1, x = -2$$

Correct Answer: Option D

128. Let
$$f(x) = \cos^{-1}\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right)$$
. Then $f'\left(\frac{\pi}{2}\right)$ is equal to

D)
$$\frac{\sqrt{3}}{2}$$

E)
$$\sqrt{3}$$

Correct Answer: Option B

129. If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$, where r is a constant and θ is a parameter, is equal to

- **A**) 0
- B) 1
- **c**) -1
- D) $\sqrt{2}$
- E) $\frac{1}{\sqrt{2}}$

Correct Answer: Option C

130. If $f(x) = \int_{0}^{x^3} (t+4)^2 dt$, then is f'(2) is equal to

- A) 288
- B) 432
- c) 144
- **D**) 216
- E) 24

Correct Answer:-Question Cancelled

131. $\lim_{x\to 0} \left(\frac{3\sin^2 2x}{x^2} \right)$ is equal to

- A) 3
- **B**) 2
- **c**) 6
- D) $\frac{3}{2}$
- E) 12

Correct Answer: Option E

132. The function $f(x) = (x-4)^2 (1+x)^3$ attains a local extremum at the point

- A) x=2
- B) x = -1
- c) x=0
- D) x=1
- E) x = -2

Correct Answer: Option A

133. The derivative of $t^2 + t$ with respect to t - 1 at t = -2, is equal to

- **A**) -4
- **B**) 2
- **c**) -1
- **D**) -3
- E) $-\frac{1}{2}$

Correct Answer: Option D

134. If a continuous function f is defined as $f(x) = \begin{cases} ax + 1, & x < 2 \\ x^2 + 7, & x \ge 2 \end{cases}$, then the value of a is

- **A**) 7
- **B**) 6
- **c**) 5
- **D**) 3
- E) 2

Correct Answer: Option C

135. If f(x) = x|x|, then f'(-1) + f'(1) is equal to

- **A**) 2
- **B**) -2
- **c**) 0
- D) -4
- E) 4

Correct Answer: Option E

136. $\int \frac{1+x^2+x^4}{(1-x^3)(1+x^3)} dx$ is equal to

A)
$$\tan^{-1} x + C$$

B)
$$\tan^{-1}(1+x^2)+C$$

c)
$$\frac{1}{2} \log \frac{1+x}{1-x} + c$$

$$\log \left(1+x^3\right)+C$$

E)
$$\log(1+x^2)+C$$

Correct Answer: Option C

A train starts from X towards Y at 3pm (time t = 0) with velocity v(t) = 10t + 25 kilometre

137. per hour, where *t* is measured in hours. Then the distance covered by the train at 5pm (in km)

- **A)** 70
- **B**) 140
- **c**) 35
- **D**) 60
- E) 55

Correct Answer: Option A

$$138. \int \sqrt{1+\sin 2x} \ dx =$$

A)
$$\sin x - \cos x + C$$

B)
$$\sin x - \csc x + C$$

c)
$$\tan x - \cot x + C$$

D)
$$\cos x - \sec x + C$$

E)
$$\tan x - \sec x + C$$

Correct Answer: Option A

139.
$$\int xe^x dx$$

A)
$$xe^x + e^x + C$$

B)
$$e^x - xe^x + C$$

c)
$$x + e^x + C$$

D)
$$xe^x - e^x + C$$

$$E) \quad xe^x - x^2e^x + C$$

Correct Answer: Option D

$$140. \quad \int e^x \sec x (1 + \tan x) dx$$

A)
$$e^x \sec x + C$$

B)
$$e^x \tan x + C$$

c)
$$e^x(\sec x + \tan x) + C$$

D)
$$e^x \sec x \tan x + C$$

E)
$$e^x \sec x + \tan x + C$$

Correct Answer: Option A

141.
$$\int_{0}^{1} x(1-x)^{10} dx$$
 is equal to

A)
$$\frac{1}{110}$$

B)
$$\frac{1}{132}$$

c)
$$\frac{1}{156}$$

D)
$$\frac{1}{90}$$

E)
$$\frac{5}{156}$$

Correct Answer: Option B

142. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\tan x + \sin x}{1 + \cos^2 x} dx$ is equal to

- A) (
- B) 2
- c) $\sqrt{2}$
- D) $2\sqrt{2}$
- E) $-2\sqrt{2}$

Correct Answer: Option A

143. $\int_{x}^{10} [x] dx$ is equal to (where [x] denotes the greatest integer function)

- **A**) 55
- B) 45
- **c**) 35
- **D**) 26
- **E**) 5

Correct Answer: Option C

144. $\int_{-2}^{4} x^2 |x| dx$ is equal to

- A) 72
- B) 68
- **c**) 64
- **D**) 48
- E) 37

Correct Answer: Option B

145. $\int_{-1}^{1} x^2 \sin x \ dx$

- A) 2sin1
- B) 2
- c) 4
- **D**) -2sin1
- **E**) 0

Correct Answer: Option E

The area of the region bounded by the curve $y = 3x^2$ and the x-axis, between x = -1 and 146.

- x = 1, is A) 2 sq. units.
- B) 4 sq. units.

c)
$$\frac{55}{27}$$
 sq. units.

D)
$$\frac{55}{23}$$
 sq. units.

E)
$$\frac{1}{2}$$
 sq. units.

Correct Answer: Option A

The order and degree of the following differential equation $\frac{d^2y}{dx^2} - 2x = \sqrt{y + \frac{dy}{dx}}$ respectively, are

- A) 2,2
- B) 2,1
- c) 1,2
- D) 4,2
- E) 1,1

Correct Answer: Option A

148. The solution of the differential equation $x + y \frac{dy}{dx} = 0$, given that at x = 0, y = 5 is

$$A) \quad x^2 + y^2 = 5y$$

B)
$$x^2 + 5y^2 = 125$$

c)
$$x^2 + y = 5$$

D)
$$x^2 + y^2 = 25$$

E)
$$2x^2 + y^2 = 25$$

Correct Answer : Option D

149. The general solution of the differential equation $(x+y)^2 \frac{dy}{dx} = 1$ is

A)
$$y = \frac{1}{2} \tan^{-1} (x + y) + c$$

B)
$$y = -(x+y)^{-1} + c$$

c)
$$y = \frac{1}{3}(x+y)^3 + c$$

$$y = \sin^{-1}(x+y) + c$$

$$= \tan^{-1}(x+y) + c$$

Correct Answer: Option E

150. The equation of the curve passing through (1, 0) and which has slope $\left(1 + \frac{y}{x}\right)$ at (x, y), is

A)
$$y=xe^x$$

$$B$$
) $y=x+\log x$

c)
$$y = x - \log x$$

D)
$$y = x + 2\log x$$

E)
$$y = x \log x$$

Correct Answer : Option E