# **PROVISIONAL ANSWER KEY**

Question Paper Code: 8/2025/OL Exam:KEAM 2025 ENGG-1 Date of Test: 23-04-2025

**1.** Let A, B, C be any three finite sets.

If  $n(A \times B) = 160$ ,  $n(B \times C) = 80$  and  $n(C \times A) = 200$ , then n(A) =

- **A**) 10
- **B**) 18
- **C**) 16
- **D**) 12
- **E**) 20

Correct Answer : Option E

**2.** Let  $f(x) = x^2 - 10x - 19$ ,  $x \in \mathbb{R}$ . Then the inverse image of 5,  $f^{-1}(5) = 10^{-1}$ 

- A)  $\{-2, -12\}$ B)  $\{-2, 12\}$
- c)  $\{2, -12\}$
- D) {2,12}
- U) (2,14
- е) ф

Correct Answer : Option B

3. Let f(x) = cosx. Then the value of  $\frac{1}{2}[f(x+y) + f(y-x)] - f(x)f(y)$  is equal to

- **A**) 2
- **B**) -2
- **C**) 1
- D) -1
- **E)** 0

Correct Answer : Option E

**4.** Let  $f(x) = \log_5 x(x>0)$  and  $g(x) = \cos^{-1} x(-1 \le x \le 1)$ . Then the domain of  $g \circ f$  is

- **A**) (0,1]
- **B**) [-1,α)
- **C**) [0,α)
- **D**)  $\left[\frac{1}{5}, 5\right]$
- **е**) [-1,5]

Correct Answer : Option D

5. Let  $z = 1 + \frac{1}{i}$ . Then the value of  $z^4$  is equal to A) 4 B) -4 c) 1-iD) 1+iE) i

Correct Answer : Option B

**6.** The modulus of the complex number  $(2\sqrt{2} + i2\sqrt{2})^2$  is equal to

- **A**) 64
- B) 4
- **c**) 32
- **D**) 8
- **E**) 16

Correct Answer : Option E

**7.** If  $z + \bar{z} = 6$  and  $z - \bar{z} = 4i$ , then  $|z|^2 =$ 

- **A**) 36
- **B**) 16
- **c**) 15
- **D**) 13
- **E**) 9

Correct Answer : Option D

8. Let  $z = \frac{2-i}{\alpha + i}$ , where  $\alpha$  is a real number. If  $4Re(z) = 3Im(\bar{z})$  then the value of  $\alpha$  is A) 5 B) -5 C) 3 D) 2 E) -2

Correct Answer : Option D

**9.** In a G.P., the first and third terms are 4 and 8 respectively. Then the  $21^{st}$  term is

- **A**) 4012
- **B**) 4064
- **c**) 4098

- 2048 D)
- 4096 E)

Correct Answer : Option E

Let  $a_1, a_2, a_3, \ldots$  be in G.P. If  $a_1 \cdot a_2 \cdot a_3 = 64$  and  $a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5 = 32$ , 10. then common ratio is  $\frac{1}{3}$ A)  $\frac{1}{8}$ B)  $\frac{1}{6}$ C)  $\frac{1}{2}$ D)  $\frac{1}{4}$ E)

Correct Answer : Option D

- The general term of a sequence is  $t_n = \frac{n(n+6)}{n+4}$ , n = 1, 2, 3, ... If  $t_n = 5$ , then the 11. value of n is
  - 2 **A**)
  - 3 B)
  - C) 4
  - 5 D)
  - 6 E)

Correct Answer : Option C

- The product of first 5 terms of a G.P., whose terms are increasing, is 32. The third term of 12. the G.P. is
  - 2 A)
  - $\frac{1}{2}$ B)
  - 4 C)

  - $\frac{1}{8}$ D)
  - 8 E)

Correct Answer : Option A

**13.** Let 
$$\alpha = \sum_{k=0}^{5} {}^{10}C_{2k}$$
 and  $\beta = \sum_{k=0}^{4} {}^{10}C_{2k+1}$ . Then  $\alpha - \beta$  is equal to  
**A**) 32  
**B**) 64

- 128 C)
- 256 D)
- E) 0

Correct Answer : Option E

**14.** If  $\alpha = {}^{n} C_{r}$  and  $\beta = {}^{n} C_{r-1}$ , then  $1 + \frac{\alpha}{\beta}$  is equal to

 $\frac{n+1}{r-1}$ A)  $\mathbf{B}) \quad \frac{n+1}{r}$ **C**)  $\frac{n-1}{1}$  $\frac{n-r+1}{r}$ D)  $\frac{n+1}{r+1}$ E)

Correct Answer : Option B

If  ${}^{11}P_r = 7920$ , then the value of *r* is equal to 15.

- **A**) 7
- B) 6
- 5 C)
- 4 D)
- 3 E)

Correct Answer : Option D

- In the binomial expansion of  $(2x + \alpha)^8$ , the co-efficients of  $x^2$  and  $x^3$  are equal. Then 16. the value of  $\alpha$  is equal to
  - 2 A)
  - $\frac{1}{4}$ B)

  - 4 C)
  - $\frac{1}{2}$ D)
  - 3 E)

Correct Answer : Option C

Let  $A = \{0, 2, 4, 6, 8\}$ . The number of 5-digit numbers that can be formed using the 17. digits in A without replacement, is

- 120 A)
- 96 B)
- 88 C)
- 64 D)

32 E)

Correct Answer : Option B

Let *A* be a 3×3 matrix and let B=3*A*. If |A|=5, then the value of  $\frac{|adj B|}{|3A|}$  is equal to 18.

- 27 **A**)
- 125 B)
- 25 C)
- 135 D)
- 81 E)

Correct Answer : Option D

If  $\begin{pmatrix} -1 & 2 \\ 3 & -4 \\ -5 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ 13 \end{pmatrix}$ , then the value of  $\alpha + \beta$  is equal to 19. -18 A) B) 18 21 C) D) -21 -2 E)

Correct Answer : Option E

If the matrix  $\begin{bmatrix} 8-k & 2\\ -2 & 4-k \end{bmatrix}$  is singular, then the value of k is equal to 20. 6 A) 5 B) 4 C) 3 D) 2 E) Correct Answer : Option A

The following system of equations

- x + y + z = 12x + 3y mz = 23x + 5y + 3z = 321. has no unique solution. Then the value of m is equal to 3
  - A)
  - 5 B)
  - 2 C)
  - -2 D)
  - E) -3

#### Correct Answer : Option D

- **22.** The set of all x satisfying the inequalities  $-4 \le 2 3x < 7$  is
  - A)  $\left(2,\frac{5}{3}\right)$ B)  $\left[2,\frac{5}{3}\right)$
  - **C**)  $\left[\frac{-11}{3}, 2\right]$
  - **D**)  $\left(\frac{-5}{3}, 2\right]$
  - **E**)  $\left[\frac{-7}{3},2\right)$

Correct Answer : Option D

**23.**  $-5 < x \le -1$  implies  $-21 < 5x + 4 \le b$ , the least value of *b* is

- **A**) 5
- в) -5
- **C**) -4
- D) 4
- **E**) -1

Correct Answer : Option E

| 24. | $tan15^{\circ} + tan75^{\circ} =$ |
|-----|-----------------------------------|
| A)  | $\sqrt{5} + 1$                    |
| B)  | 2                                 |
| C)  | $\sqrt{7} - 1$                    |
| D)  | 4                                 |
| E)  | 0                                 |
|     |                                   |

Correct Answer : Option D

**25.** If x + z = 2y and  $y = \frac{\pi}{4}$ , then  $\tan x \tan y \tan z =$  **A**) 1 **B**) tan(x - y) **c**) tan(x - y) **D**)  $\frac{1}{2}$ **E**) 0

Correct Answer : Option A

26. If  $\sin x + \sin y = a$ ,  $\cos x + \cos y = b$  and  $x + y = \frac{2\pi}{3}$ , then the value of  $\frac{a}{b}$  is equal to A)  $\frac{\sqrt{3}}{3}$ B)  $2\sqrt{3}$ 

- c)  $\sqrt{3}$
- D)  $4\sqrt{3}$
- E)  $\frac{\sqrt{3}}{6}$

Correct Answer : Option C

**27.** If  $\sin \alpha = \frac{12}{13}$ , where  $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$  then the value of  $\tan \alpha$  is equal to **A**)  $\frac{5}{12}$  **B**)  $\frac{13}{5}$  **C**)  $\frac{-12}{5}$  **D**)  $\frac{-13}{5}$ **E**)  $\frac{-1}{12}$ 

Correct Answer : Option C

| 28. | If $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ , then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to |
|-----|----------------------------------------------------------------------------------------------------------|
| A)  | $\frac{\pi}{6}$                                                                                          |
| B)  | $\frac{2\pi}{3}$                                                                                         |
| C)  | $\frac{\pi}{3}$                                                                                          |
| D)  | $\frac{4\pi}{3}$                                                                                         |
| E)  | 0                                                                                                        |

Correct Answer : Option C

**29.** if  $5 \sin^{-1} \alpha + 3\cos^{-1} \alpha = \pi$ , then  $\alpha$  is equal to **A**)  $\frac{1}{\sqrt{2}}$  **B**) 1 **c**)  $\frac{-1}{\sqrt{2}}$ **D**) -1 **E**) 0

Correct Answer : Option C

**30.** If 
$$\theta = \cot^{-1} \sqrt{\frac{1-x}{1+x}}$$
, then  $\sec^2 \theta$   
**A**)  $\frac{1+x}{2}$   
**B**)  $\frac{1-x}{2}$   
**C**)  $\frac{2}{1-x}$   
**D**)  $x$   
**E**)  $2x$ 

Correct Answer : Option C

- **31.** The straight line ax + by + c = 0 passes through the point (-10, 7). If the line is perpendicular to 11x 7y = 13, then the value of c is equal to
  - **A**) 8
  - в) -7
  - **C**) 13
  - **D**) -13
  - E) 5

Correct Answer : Option B

- **32.** Let *ABC* be an equilateral triangle. If the coordinates of *A* are (-2, 2) and the side BC is along the line x + y = 6, then the length of the side of the triangle is
  - A)  $2\sqrt{3}$
  - **B**) 3√2
  - c)  $4\sqrt{6}$
  - D)  $6\sqrt{6}$
  - E) 2√6

Correct Answer : Option E

- **33.** The focus of the parabola  $x^2 4x + 8y + 4 = 0$  is
  - A) (-2, -2)
  - в) (1,1)
  - **c**) (2,1)
  - D) (2, -2)
  - E) (1,2)

Correct Answer : Option D

- **34.** A circle touches the x axis at (9, 0). If it also touches the straight line y = 14, then the equation of the circle is
- A)  $(x-9)^2 + (y-7)^2 = 49$
- **B**)  $x^2 + (y 7)^2 = 49$
- c)  $(x-9)^2 + y^2 = 49$
- D)  $(x-9)^2 + (y-7)^2 = 81$
- E)  $(x-7)^2 + (y-9)^2 = 49$

Correct Answer : Option A

**35.** The length of major axis and minor axis of an ellipse are, respectively, *m* and *n*. If  $m^2 - n^2$  =45 and the eccentricity of the ellipse is  $\frac{\sqrt{5}}{3}$ , then the length of the major axis is

- **A**) 13
- **B)** 6
- **C**) 12
- **D**) 18
- **E**) 9

Correct Answer : Option E

**36.** The vertex of the parabola  $4y = x^2 - 6x + 17$  is

- A) (3,2)
- в) (4,3)
- **c**) (4,2)
- D) (3,7)
- E) (7,2)

Correct Answer : Option A

**37.** The eccentricity of the hyperbola  $\frac{(2x-6)^2}{2} - \frac{(4y+7)^2}{16} = 1$  is **A**)  $\sqrt{5}$ **B**)  $\frac{\sqrt{5}}{2}$ 

- c)  $\sqrt{3}$
- D)  $\sqrt{10}$
- $\mathbf{E} ) \quad \frac{\sqrt{3}}{2}$

Correct Answer : Option C

**38.** Let  $\vec{a} + \vec{b} = \lambda \hat{i} + 16\hat{j} - 18\hat{k}$  and  $\vec{a} - \vec{b} = 2\hat{i} + 8\hat{j} + \lambda \hat{k}$ . If  $\vec{a} + \vec{b}$  is perpendicular to  $\vec{a} - \vec{b}$ , then  $|\vec{a}| =$ 

- **A**)  $5\sqrt{13}$
- **B**) √174
- **c**) √184
- D) 13√5
- E) √194

Correct Answer : Option E

- **39.** If  $|\vec{a}|=12$  and the projection of  $\vec{a}$  on  $\vec{b}$  is  $6\sqrt{3}$ , then the angle between  $\vec{a}$  and  $\vec{b}$  is
  - A)  $\frac{\pi}{2}$
  - **B**)  $\frac{\pi}{6}$
  - $\begin{array}{c} \mathbf{C} \ \mathbf{D} \ \mathbf{C} \ \mathbf{$
  - E)  $\frac{3\pi}{4}$

Correct Answer : Option B

**40.** Let  $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ . If  $\vec{b}$  is parallel to  $\vec{a}$  and  $\vec{a}$ .  $\vec{b} = \frac{49}{2}$ , then  $|\vec{b}| =$  **A**) 49 **B**) 7 **C**) 14 **D**)  $7\sqrt{2}$ **E**)  $\frac{7}{2}$ 

Correct Answer : Option E

41. If  $|\vec{a} + \vec{b}| = \frac{\sqrt{14}}{2}$  where  $\vec{a}$  and  $\vec{b}$  are unit vectors, then the value of  $|\vec{a} + \vec{b}|^2 - |\vec{a} - \vec{b}|^2$  is equal to A) 3 B) 4 C)  $\sqrt{5}$ D)  $\sqrt{7}$ E) 7 Correct Answer : Option A

Let  $\alpha$  ,  $\beta$  and  $\gamma$  be the angles made by a straight line with the x-axis, y-axis and z-axis **42.** respectively. If  $\cos \alpha + \cos \beta + \cos \gamma = \frac{5}{3}$ , then the value of  $\cos \alpha \cos \beta + \cos \beta$  $cos \gamma + cos \gamma cos \alpha$  is equal to  $\frac{11}{3}$ A) 8 9 B)  $\frac{11}{9}$  $\frac{7}{3}$ C) D)

79

E)

#### Correct Answer : Option B

- A straight line passing through (6,1,3) meets the line  $\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$  at Q. If the lines are 43. perpendicular to each other, then the coordinates of Q are
  - (2,1,3)A)
  - (1,2,3)B)
  - (3, 1, 5)C)
  - (2, -1, 3)D)
  - (-1,2,3)E)

Correct Answer : Option C

| 44. | The angle between the lines $\frac{x-3}{1} = \frac{y+1}{-1} = \frac{z-2}{-1}$ and $\frac{x+1}{2} = \frac{y-2}{2} = \frac{z+3}{-2}$ is |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| A)  | $\cos^{-1}\left(\frac{\sqrt{2}}{6}\right)$                                                                                            |
| B)  | $\cos^{-1}\left(\frac{\sqrt{6}}{6}\right)$                                                                                            |
| C)  | $\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$                                                                                            |
| D)  | $\cos^{-1}\left(\frac{1}{3}\right)$                                                                                                   |
| E)  | $\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$                                                                                            |
|     |                                                                                                                                       |

#### Correct Answer : Option D

A straight line passes through the points (10,8, 6) and (13,9, 4). A unit vector parallel to 45. this line is

A) 
$$\frac{1}{\sqrt{17}}(3\hat{i} + 2\hat{j} + 2\hat{k})$$
  
B)  $\frac{1}{\sqrt{6}}(\hat{i} + \hat{j} - 2\hat{k})$   
c)  $\frac{1}{\sqrt{14}}(3\hat{i} + \hat{j} + 2\hat{k})$ 

D) 
$$\frac{1}{\sqrt{17}}(3\hat{i} + \hat{j} + 2\hat{k})$$
  
E)  $\frac{1}{\sqrt{14}}(3\hat{i} + \hat{j} - 2\hat{k})$ 

Correct Answer : Option E

A box contains 4 red and 6 white marbles. Two successive draws of 3 balls are made46. without replacement. The probability that in the first draw, all the 3 balls are white and in the second draw, all the 3 balls are red, is

| • • | 2              |
|-----|----------------|
| A)  | 105            |
| B)  | $\frac{1}{70}$ |
| C)  | 4              |
|     | 105            |
| D)  | 1              |
|     | 105            |
| E)  | 1              |
|     | 35             |

Correct Answer : Option A

**47.** Let *A* and *B* be two events. If P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4, P (A | B')= 0.7 and P(B) = 0.7, then P(A | B) = 0.4.

- · · A) =
- **A**) 0.44
- **B**) 0.54
- **C**) 0.49
- **D**) 0.5
- **E**) 0.65

Correct Answer : Option C

**48.** The standard deviation of the numbers -3, 0, 3, 8 is

**A**)  $\frac{\sqrt{60}}{2}$ **B**)  $\frac{\sqrt{62}}{2}$ 

**C**)  $\frac{\sqrt{65}}{2}$ 

 $D) \frac{1}{2}$ 

$$\mathbf{E} ) \quad \frac{\sqrt{67}}{2}$$

Correct Answer : Option D

**49.** An unbiased die is tossed until 5 appears. If *X* denotes the number of tosses required, then  $\frac{P(X=2)}{P(X=5)}$  =

- A)  $\frac{25}{36}$ 125
- **B**)  $\frac{120}{216}$
- **C**)  $\frac{216}{125}$
- **C**) 125
- **D**)  $\frac{36}{25}$
- E)  $\frac{216}{25}$
- E) 25

Correct Answer : Option C

**50.** 
$$\lim_{x \to 0} \frac{x^2}{\sqrt{2} - \sqrt{1 + \cos x}}$$
 is equal to  
**A**)  $4\sqrt{2}$   
**B**)  $4$   
**C**)  $2\sqrt{2}$   
**D**)  $\sqrt{2}$   
**E**)  $0$ 

Correct Answer : Option A

**51.** Let  $f(x) = \begin{cases} \frac{\tan \alpha x + (\beta + 1) \tan x}{x}, & \text{for } x \neq 0 \\ 5, & \text{for } x = 0 \end{cases}$  be continuous at x = 0. Then the value of  $\alpha + \beta$  is equal to **A**) 2 **B**) 3 **C**) 4 **D**) 5 **E**) 6

Correct Answer : Option C

**52.** The domain of the function  $f(x) = \sqrt{x-3} + 4\sqrt{5-x}$  is

- **A**) [1,2]
- **B**) [2,4]
- **C**) [3,5]

[3,20] D)

[12,20] E)

Correct Answer : Option C

**53.** If 
$$f(x) = \frac{3^{x}}{3^{x} + \sqrt{3}}$$
, then  $f(x) + f(1 - x)$  is equal to  
**A**)  $\sqrt{3}$   
**B**)  $\frac{1}{\sqrt{3}}$   
**c**)  $2\sqrt{3}$   
**D**) 1  
**E**) 0

Correct Answer : Option D

54. 
$$\lim_{x \to 0} \frac{\sqrt{\cos^2 x + 3} - \sqrt{\cos^2 x + \sin x + 3}}{x} =$$
A)  $\frac{1}{4}$ 
B)  $\frac{-1}{4}$ 
C)  $\frac{1}{2}$ 
D)  $\frac{-1}{2}$ 
E) -1

Correct Answer : Option B

If  $f(x) = |x^2 + x - 6|$  is not differentiable at x = a and x = b, then  $a^2 + b^2 =$ 55. A) 11 14 B) 12 C) 13 D) 16 E)

#### Correct Answer : Option D

Let  $f(x) = |\sin 3x| - |\cos 3x|$ , where  $\frac{\pi}{6} \le x \le \frac{\pi}{3}$ . Then the value of  $f'\left(\frac{\pi}{4}\right)$  is equal to 56.

- **A**)  $-3\sqrt{2}$
- **в**)  $3\sqrt{2}$
- **C**)  $\frac{-3}{\sqrt{2}}$
- $\frac{3}{\sqrt{2}}$ D)

**E)** 0

Correct Answer : Option A

57. Let  $h(x) = f(\sqrt{g(x)})$ . If f'(3) = 6, g'(3) = 3 and g(3) = 9, then the value of h'(3) is equal to A) 1 B) 3 C) 6 D) 9

**E)** 18

Correct Answer : Option B

**58.** Let  $f(x) = (cos^2 x)(a + cos x)$ . If  $f'(\frac{\pi}{3}) = 0$  then the value of a is equal to A)  $\frac{\sqrt{3}}{2}$ B)  $\frac{3}{4}$ C)  $\frac{-3}{4}$ D)  $\frac{-3}{2}$ E) -1

Correct Answer : Option C

59. If  $y = tan^{-1}(x^2 - x)$ , then  $\frac{dy}{dx} =$ A)  $\frac{2x}{1 + (x^2 - x)^2}$ B)  $\frac{2x - 1}{1 + (x^2 - x)^2}$ C)  $\frac{2x - 1}{1 - (x^2 - x)^2}$ D)  $\frac{-2x + 1}{1 + (x^2 - x)^2}$ E)  $(2x - 1)(1 + (x^2 - x)^2)$ 

Correct Answer : Option B

# **60.** The function $f(x) = x^2(x-2)$ is strictly decreasing in

- A) (1,2) B) (-1.1)
- **C**)  $\left(\frac{4}{3},\infty\right)$

**D**) (-1,0) **E**)  $\left(0,\frac{4}{3}\right)$ 

Correct Answer : Option E

The surface area of a solid hemisphere is increasing at the rate of 8~ c  $m^2$  / sec

**61.** (retaining its shape). Then the rate of change of its volume (in  $cm^3$  / sec ), when the radius is 5cm, is

**A**)  $\frac{50}{3}$  **B**)  $\frac{20}{3}$  **C**)  $\frac{40}{3}$ **D**)  $\frac{25}{3}$ 

**E**)  $\frac{80}{3}$ 

Correct Answer : Option C

**62.** The function  $f(x) = 2x^3 - 3x^2 - 36x + 28$  is increasing in A)  $(-\infty, -1] \cup [3, \infty)$ B)  $(-\infty, -2] \cup [3, \infty)$ c)  $(-\infty, -2] \cup [5, \infty)$ D)  $(-\infty, -5] \cup [3, \infty)$ E)  $(-\infty, -2] \cup [8, \infty)$ 

Correct Answer : Option B

**63.** Let  $f(x) = x^2 + \alpha x + \beta$ . If f has a local minimum at (2, 6), then f(0) is equal to **A**) 10 **B**) -6 **C**) 8 **D**) -8 **E**) 6

Correct Answer : Option A

64. 
$$\int \frac{2x^2 + 4x + 3}{x^2 + x + 1} dx =$$
  
A)  $2\log_e |x^2 + x + 1| + C$   
B)  $2x\log_e |x^2 + x + 1| + C$   
c)  $\frac{1}{2}\log_e |x^2 + x + 1| + C$ 

D)  $2x + \log_e |x^2 + x + 1| + C$ E)  $x + 2\log_e |x^2 + x + 1| + C$ 

Correct Answer : Option D

**65.** 
$$\int \frac{\sin^{-1}x}{\sqrt{1-x^2}} dx =$$
  
A) 
$$\frac{1}{2}(\sin^{-1}x)^2 + C$$
  
B) 
$$-(\sin^{-1}x)\sqrt{1-x^2} + C$$
  
C) 
$$(\sin^{-1}x)\sqrt{1-x^2} + x + C$$
  
D) 
$$(\sin^{-1}x)\sqrt{1-x^2} - x + C$$

**E**) 
$$(sin^{-1}x)^2 + C$$

Correct Answer : Option A

66. 
$$\int x^{7} (x^{8} + 1)^{-3/4} dx =$$
A) 
$$\frac{1}{2} \left( 1 + \frac{1}{x^{8}} \right)^{1/4} + C$$
B) 
$$4 \left( 1 + \frac{1}{x^{8}} \right)^{1/4} + C$$
C) 
$$(x^{8} + 1)^{1/4} + C$$
D) 
$$4 (x^{8} + 1)^{1/4} + C$$
E) 
$$\frac{1}{2} (x^{8} + 1)^{1/4} + C$$

Correct Answer : Option E

- **67.**  $\int e^x \sec x(1 + \tan x) dx$ 
  - A)  $e^x sec^2 x + C$
  - **B**)  $e^x tan x + C$
  - c)  $e^x \sec x + C$
  - D)  $e^x tan^2 x + C$
  - E)  $e^x s \text{ ec } x \ tan x + C$

Correct Answer : Option C

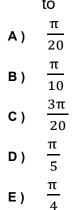
**68.** 
$$\int e^{x}(x^{2}-2)cos(e^{x}(x^{2}-2x)) dx =$$
  
A)  $sin(e^{x}(x^{2}-2x)) + C$   
B)  $sin(e^{x}(x^{2}-2)) + C$ 

- c)  $x^2 e^x sin(e^x(x^2-2)) + C$
- D)  $e^x sin(e^x(x^2-2)) + C$
- E)  $e^x sin(x^2 e^x 2x e^x) + C$

Correct Answer : Option A

lf  $\int_{-\sqrt{2}}^{1} (-6x^2 + 18) dx = \alpha + \beta \sqrt{3}$ 69.

then the value of  $\alpha$  +


- $\beta$  is equal to
- 12 A)
- B) 18
- C) 24
- 28 D)
- 32 E)

Correct Answer : Option D

The value of

| 70. | $\int_{\pi/10}^{2\pi/5} \frac{\cot^3 x}{1 + \cot^3 x}  dx$ |
|-----|------------------------------------------------------------|
| to  |                                                            |

is equal



#### Correct Answer : Option C

**71.** The area of the region bounded by  $y = x^{5/2}$  and y = x (in square units) is

- $\frac{3}{7}$ A)
- 2 7 B)
- 3 14 C)

| D) | 5  |
|----|----|
|    | 14 |
| E) | 4  |
|    | 7  |

Correct Answer : Option C

72.  $\int_{0}^{1} \frac{3^{2x}}{3^{2x}+1} dx =$ A)  $\frac{\log_{e} 5}{2\log_{e} 3}$ B)  $\frac{\log_{e} 5}{9\log_{e} 3}$ C)  $\frac{\log_{e} 5}{3\log_{e} 3}$ D)  $\frac{2\log_{e} 5}{3\log_{e} 3}$ E)  $\frac{2\log_{e} 5}{9\log_{e} 3}$ 

Correct Answer : Option A

**73.** If 
$$y(x) = 2y'(x)$$
,  $y(x) \ge 0$  and  $y(0) = e^2$  then  $y(x) = e^2$ 

- A)  $e^{x/2} + 2$
- B)  $e^{2x}$
- c)  $e^{x/2}$
- D)  $e^2 e^{x/2}$
- **E**)  $e^{2x} + 2$

Correct Answer : Option D

**74.** The integrating factor of the differential equation  $sinx dy = \frac{1}{2}(sin2x + 2y cosx)dx$  is

- A) sec x
- B) sin x
- c) tan x
- D) COS X
- E) cosec x

Correct Answer : Option E

- 75. In the graphical method of a linear programming problem, the optimal solution lies
- A) at the centre of the feasible region
- B) at a corner point of the feasible region

- c) at a point on the x-axis
- **D**) at the origin
- E) at the point where the objective function is zero

Correct Answer : Option B

**76.** If  $2.7 \times 10^{-6}$  is added to  $4.3 \times 10^{-5}$ , giving due regard to significant figures, the result will be

- A)  $4.57 \times 10^{-5}$
- **B**) 4.6×10<sup>-5</sup>
- c)  $4.5 \times 10^{-5}$
- D) 7.0×10<sup>-5</sup>
- E)  $4.57 \times 10^{-6}$

Correct Answer : Option B

- **77.**  $[L^0 M^0 T^{-1}]$  is the dimensional formula for
- A) angular velocity
- B) activity of radioactive substance
- c) time period of oscillation
- D) half life period of a radioactive substance
- E) impulse of the force

Correct Answer : Option B

- **78.** If the velocity (in  $ms^{-1}$ ) of a particle at any instant *t* is given by  $2.0\hat{t} + 3.0t\hat{j}$  then the magnitude of its acceleration (in  $ms^{-2}$ ) is
- **A**) 5
- **B**) 3
- **c**) 2
- D) 4
- **E)** 6

Correct Answer : Option B

**79.** Among the following pairs of vectors, if the resultant of two vectors can never have magnitude 4 units, then the magnitudes of the vectors are

- A) 2 units and 2 units
- B) 1 unit and 3 units
- c) 5 units and 1 unit
- D) 7 units and 2 units
- E) 5 units and 8 units

Correct Answer : Option D

80. The ratio of angular speeds of the minute hand and second hand of a watch is

- **A**) 1:12
- **B)** 1:6
- **c**) 1:60
- **D**) 12:1
- E) 60:1

Correct Answer : Option C

81. When a body is thrown vertically upwards, from the ground, the time of ascent is  $t_1$  and the time of descent is  $t_2$  in the absence of air resistance. Then  $t_1$  is equal to

- A)  $2t_s$
- **B**) 0.5*t*<sub>2</sub>
- **c**)  $0.25t_2$
- **D**)  $t_2$
- **E**) 4*t*<sub>2</sub>

Correct Answer : Option D

82. When a person of mass m climbs up or down a rope with uniform speed v, the tension in the rope is (g = acceleration due to gravity)

- **A**) *mg*
- **B**) m(g + v)
- c) m(g-v)
- D) mgv
- E)  $m(\frac{g}{n})$

Correct Answer : Option A

A body of mass 0.2 kg travels along a straight line path with velocity  $v = (2x^2 + 2)m$ 

- **83.**  $s^{-1}$ . The net work done by the driving force during its displacement from x = 0 to x = 2m is
  - **A**) 5.4 J
  - **B**) 4.8 J
  - **c**) 9.6 J
  - **D**) 10.8 J
  - E) 6.5 J

Correct Answer : Option C

- 84. Two colliding particles after collision move together. Then the collision is
- A) partial elastic collision
- B) perfectly inelastic collision

- c) perfectly elastic collision
- D) partial inelastic collision
- E) collision without any transfer of energy

Correct Answer : Option B

A solid cylinder, a solid sphere, a disc and a ring are released from the top of an inclined85. plane (frictionless) so that they slide down the plane without rolling. The maximum acceleration down the plane is

- A) for the disc
- **B**) for the solid cylinder
- c) for the solid sphere
- D) for the ring
- E) the same for all

Correct Answer : Option E

- **86.** When a particle is rotating with constant angular momentum, then
  - A) torque acting on it is constant
  - **B**) force acting on it is constant
  - c) linear momentum is constant
  - **D**) torque acting on it is zero
  - E) linear velocity is constant

# Correct Answer : Option D

Two objects of masses 1 kg and 2 kg are moving towards each other with accelerations 2 **87.**  $ms^{-2}$  and 3  $ms^{-2}$  respectively on a smooth horizontal surface. The acceleration of centre of mass of the system is

A)  $\left(\frac{4}{3}\right)ms^{-2}$  in in the direction of acceleration of 2 kg mass B)  $\left(\frac{2}{3}\right)ms^{-2}$  in in the direction of acceleration of 1 kg mass C)  $\left(\frac{2}{3}\right)ms^{-2}$  in in the direction of acceleration of 2 kg mass D)  $\left(\frac{4}{3}\right)ms^{-2}$  in in the direction of acceleration of 1 kg mass E) zero

Correct Answer : Option A

- **88.** There is a mine of depth about 3.0 km. Conditions prevailing in this mine as compared to those at the surface of earth are
- A) higher air pressure, lower acceleration due to gravity
- B) higher air pressure, higher acceleration due to gravity
- c) lower air pressure, higher acceleration due to gravity
- D) lower air pressure, lower acceleration due to gravity

E) same air pressure and acceleration due to gravity

Correct Answer : Option A

The period of revolution of the planet A around the sun is 27 times that of another planet **89.** *B*. If the distance of A from the sun is x times greater than that of B from the sun, then the value of x is

- **A**) 8
- в) 4
- **c**) 9
- **D**) 3
- **E**) 12

Correct Answer : Option A

- **90.** The work done in splitting a spherical liquid drop of radius 'a' into eight liquid droplets of the same size is (surface tension of the liquid = S)
  - A)  $8\pi Sa^2$
  - **B**) π Sa<sup>2</sup>
  - c)  $2\pi Sa^2$
  - D)  $4\pi Sa^2$
  - **E**) 16π Sa<sup>2</sup>

Correct Answer : Option D

- **91.** vessel containing a liquid of density d moves down with an acceleration a(a < g). The pressure due to the liquid at a depth of h below the free surface of the liquid is
  - A) hgd
  - в) h(g-a)d
  - c) h(g+a)d
  - D)  $h\left(\frac{g}{a}\right)d$ E)  $h\left(\frac{a}{a}\right)d$

Correct Answer : Option B

An incompressible liquid flows through a horizontal pipe having cross-sectional areas A at one end and 2A at the other end. If the pressure and velocity of the liquid at the lower

**92.** cross- sectional end are *P* and *v*, then those values at the other end are (density of the liquid = $\rho$ )

**A**) 
$$\frac{v}{2}$$
,  $P + \frac{3}{8}\rho v^2$ 

**B**) 
$$v, P + \frac{1}{8}\rho v^2$$

- c)  $\frac{v}{4}$ ,  $P + \frac{1}{4}\rho v^2$
- **D**)  $v, P + \frac{1}{2}\rho v^2$
- **E**)  $2P + \rho v^2$

Correct Answer : Option A

- 93. Efficiency of a Carnot engine
- A) depends on the nature of the working substance
- B) does not depend on the nature of the working substance
- **c**) depends only on the temperature of the source  $T^1$
- **D**) depends only on the temperature of the sink  $T^2$
- E) does not depend on both temperature of the source  $T^1$  and temperature of the sink  $T^2$

Correct Answer : Option B

A cylindrical vessel contains 16 kg of gas at a pressure of 1 atmosphere. A certain amount of gas is taken out and the pressure of gas in the vessel becomes 0.75 atmosphere. The amount of gas taken out is

- A) 2.5 kg
- в) 4 kg
- **c**) 7.5 kg
- **D**) 8.25 kg
- E) 10 kg

Correct Answer : Option B

- 95. The number of degrees of freedom for monoatomic gas molecule is
  - **A**) 3
  - в) 4
  - **c**) 5
  - D) 7
  - **E**) 1

Correct Answer : Option A

- **96.** Pick out the INCORRECT STATEMENT
- A) Internal energy of an ideal gas depends only on its temperature
- B) Change in the internal energy in a cyclic process is not zero
- c) Change in the internal energy of a gas depends only on its initial and final states
- D) Internal energy depends upon state of matter
- E) Change in the internal energy in a cyclic process is zero

The distance travelled by a particle executing linear S.H.M. from its mean position in 2s is equal to  $\frac{1}{\sqrt{2}}$  times its amplitude. Then its time period in seconds is

- **A**) 10
- **B**) 8
- **c**) 9
- **D**) 12
- **E**) 16

Correct Answer : Option E

**98.** Time periods of pendulums *A* and *B* are *T* and  $\frac{5T}{2}$ . If they start executing S.H.M. at the same time from the mean position, the phase difference between them after the bigger pendulum has completed one oscillation is

- A) π/4
- **B**) (π / 2)
- **c**) π / 8
- **D**) π / 16
- **Ε)** π

Correct Answer : Option E

string of length l is divided into three segments of lengths  $l_1$ ,  $l_2$  and  $l_3$  with the fundamental frequencies  $n_1$ ,  $n_2$  and  $n_3$  respectively. The original fundamental frequency

of

the string n is given by

- A)  $n = n_1 + n_2 + n_3$
- B)  $\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$
- **C**)  $\sqrt{n} = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3}$
- **D**)  $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$
- $e) \quad n=n_1n_2n_3$

# Correct Answer : Option B

- **100.** The inward and outward electric flux from a closed surface are  $6 \times 10^4 NM^2C^{-1}$  and  $3 \times 10^4 NM^2C^{-1}$ . Then the net charge (in coulomb) inside the closed surface is
- A)  $-6 \times 10^4 \varepsilon_0$
- B)  $6 \times 10^4 \varepsilon_0$

- c)  $3 \times 10^4 \varepsilon_0$
- D)  $9 \times 10^4 \varepsilon_0$
- E)  $-3 \times 10^4 \varepsilon_0$

Correct Answer : Option E

**101.** In a circuit, the capacitance C is connected. The effective capacitance of the circuit can be reduced by

- A) introducing a metal plate between the plates of the capacitor
- B) introducing a dielectric slab between the plates
- c) reducing the potential difference between the plates
- D) connecting another capacitor in series with it
- E) connecting another capacitor in parallel with it

# Correct Answer : Option D

- **102.** A given charge Q is divided into two parts which are then kept at a distance 'd' apart. The electrostatic force between them will be maximum if the two parts are
  - **A**)  $\frac{Q}{4}$  and  $\frac{3Q}{4}$
  - **B**)  $\frac{7Q}{8}$  and  $\frac{Q}{8}$
  - **c**)  $\frac{Q}{3}$  and  $\frac{2Q}{3}$
  - ' 3 3 50 (

**D**) 
$$\frac{5\sqrt{2}}{6}$$
 and  $\frac{\sqrt{2}}{6}$ 

E) 
$$\frac{q}{2}$$
 each

# Correct Answer : Option E

**103.** The dependence of drift velocity  $v_d$  on the electric field *E*, for which Ohm's law is obeyed is

- A)  $v_d \propto E^2$
- B)  $v_d \propto E$
- c)  $v_d \propto \sqrt{E}$
- D)  $v_d \propto \frac{1}{E}$ E)  $v_d \propto \frac{1}{E^2}$

# Correct Answer : Option B

**104.** If an equilateral triangle is made of a uniform wire of resistance R, then the equivalent resistance between the ends of a side is

| A) | $\frac{2R}{3}$ |
|----|----------------|
| B) | <u>R</u><br>3  |
| C) | <u>R</u><br>9  |
| D) | <u>2R</u><br>9 |
| E) | <u>R</u><br>6  |

Correct Answer : Option D

**105.** When 'n' identical cells are connected in parallel,

- A) net voltage increases
- B) net current increases
- c) net voltage decreases
- D) net current decreases
- E) total internal resistance increases

Correct Answer : Option B

**106.** In a cyclotron, if the frequency of the accelerating field is doubled, then the radius of the charged particle moving in a circular path will be

- A) doubled
- B) quadrupled
- c) the same
- D) halved
- E) reduced to one fourth of the original radius

Correct Answer : Option C

A galvanometer of resistance  $100\Omega$  gives a full scale deflection for a current of 1mA **107.** through it. The resistance required to convert it into a voltmeter which can read upto 2 V is

- **A**) 1175 Ω
- **B**) 1200 Ω
- c) 1525  $\Omega$
- **D**) 1900 Ω
- **E**) 2025 Ω

Correct Answer : Option D

108. If a magnetic material has magnetic susceptibility  $\chi=-0.5\,$  , then its relative magnetic permeability  $\mu_{\,r}\,$  and the type of material is

- A) 0, diamagnetic
- B) 2, ferromagnetic

- c) 1, paramagnetic
- **D**) -1, ferromagnetic
- E) 0.5, diamagnetic

Correct Answer : Option E

- **109.** The self-inductance of an air core solenoid is L. If the number of turns in the solenoid is doubled, keeping all other factors constant, then its self-inductance will be
- **A**) *L*
- **B**)  $\frac{L}{2}$
- 2
- c) 2L
- D) 4L
- E) 8L

Correct Answer : Option D

- **110.** An alternating current having the peak value  $10\sqrt{2}A$  is used to heat a metal wire. To produce the same heating effect, the constant current required is
  - **A**)  $10\sqrt{2}A$
  - **B**) 5A
  - **C**) 14A
  - **D**) 7A
  - **E**) 10A

Correct Answer : Option E

- **111.** If  $v_r$ ,  $v_x$  and  $v_v$  are the speeds of gamma rays, X-rays and visible light respectively in vacuum, then
  - A)  $v_g > v_v > v_X$
  - B)  $v_g < v_v < v_X$
  - c)  $v_g = v_v = v_X$
  - d)  $v_g > v_v < v_X$
  - E)  $v_X < v_g < v_v$

Correct Answer : Option C

- **112.** When a ray of light moves from one medium to another medium,
- A) its frequency remains unchanged
- B) its frequency alone changes
- **c**) its wavelength remains unchanged
- **D**) both its frequency and wavelength change
- E) its velocity remains constant

Correct Answer : Option A

**113.** The Brewster's angle  $i_B$  for any interface should lie between

- $30^\circ$  and  $45^\circ$ A)
- **B**)  $45^{\circ}$  and  $90^{\circ}$
- **c**)  $0^{\circ}$  and  $30^{\circ}$
- $0^\circ$  and  $90^\circ$ D)
- $30^{\circ}$  and  $60^{\circ}$ E)

Correct Answer : Option B

In an Young's double slit experiment, the band width of the fringes observed is  $\beta$ , when **114.** light of wave length  $\lambda$  is used. With same experimental set up, to double the band width of the fringes, the wave length of light required is

λ A)  $\frac{\lambda}{2}$ B) 2λ C)

- $\frac{\lambda}{4}$ D)
- $\frac{\lambda}{8}$ E)

Correct Answer : Option C

Pick out the INCORRECT statement from the following : 115.

- In photoelectric phenomenon,
- the value of stopping potential is the same for radiations of all frequencies A)
- the stopping potential is more negative for the incident radiation of higher frequency B)
- the value of saturation current depends on the intensity of incident radiation C)
- the value of saturation current is independent of frequency of incident radiation D)
- the emission of electrons is instantaneous E)

Correct Answer : Option A

- If  $\lambda$  be the wavelength of any electromagnetic radiation, the de-Broglie wavelength of its 116. quantum (photon) is
  - $\frac{\lambda}{4}$ **A**)
  - λ B)
  - $\frac{\lambda}{2}$
- C)
- 2λ D)
- 3λ E)

Correct Answer : Option B

The half-life periods of two radioactive materials A and B are 1500 years and 1200 years respectively. If their mean life periods are  $\tau_A$  and  $\tau_B$  respectively, then the value of the

**117.**  $ratio \frac{\tau_A}{\tau_B}$  **A**)  $\frac{5}{4}$  **B**)  $\frac{2}{3}$  **C**)  $\frac{3}{5}$ **D**)  $\frac{5}{7}$ 

**E)**  $\frac{2}{5}$ 

Correct Answer : Option A

**118.** The greatest wavelength of the radiation that will ionize unexcited hydrogen atom is

- **A**) 1820 Å
- **B)** 450 Å
- **c**) 910 Å
- **D**) 700 Å
- **E)** 1400 Å

Correct Answer : Option C

An alternating voltage of 250 V, 50 Hz is applied to a full wave rectifier. If the internal **119.** resistance of each diode is  $10\Omega$  and the load resistance is  $5k\Omega$ , the peak value of output current is

- **A**) 0.05 A
- **B**) 0.07 A
- **c**) 0.02 A
- **D**) 0.03 A
- **E)** 0.04 A

Correct Answer : Option B

**120.** The reverse biasing in a junction diode,

- A) increases the number of majority charge carriers
- B) increases the number of minority charge carriers
- c) reduces the number of minority charge carriers
- D) decreases the potential barrier
- E) increases the potential barrier

Correct Answer : Option E

- **121.** The density of 3 M aqueous solution of a solute 'X' is 1.86 g  $mL^{-1}$ . The molality of the solution is (Molar mass of solute 'X' is 120 g  $mol^{-1}$ )
  - **A**) 3m
  - **B)** 4m
  - **c**) 2m
  - **D**) 5m
  - **E**) 1m

Correct Answer : Option C

The Vividh Bharati station of All India Radio, Kozhikode, broadcasts on a frequency of **122.** 1500 kHz. What is the wavelength of the electromagnetic radiation emitted by

transmitter?( c =  $3 \times 10^8 m s^{-1}$  )

- **A**) 200 m
- **B**) 300 m
- **c**) 100 m
- **D**) 250 m
- **E)** 150 m

Correct Answer : Option A

- **123.** Which of the following experimental phenomenon is explained by the wave nature of electromagnetic radiation?
- A) Black-body radiation
- B) Photoelectric effect
- c) Diffraction
- D) Variation of heat capacity of solids as a function of temperature
- E) Line spectra of atoms with reference to hydrogen

Correct Answer : Option C

124. Which of the following pair of oxides is neutral?

- A)  $Al_2O_3$  and  $Na_2O$
- **B**)  $Al_2O_3$  and  $As_2O_3$
- c)  $Cl_2O_7$  and  $Na_2O$
- **D**)  $Cl_2O_7$  and  $Al_2O_3$
- E) CO and  $N_2O$

Correct Answer : Option E

- **125.** The correct increasing order of dipole moment of  $NF_3$ ,  $H_2S$ ,  $CHCl_3$  and  $NH_3$  molecules is
- A)  $NF_3 < H_2S < CHCl_3 < NH_3$
- $B_{1} \quad NH_{3} < H_{2}S < CHCl_{3} < NF_{3}$

- c)  $NF_3 < CHCl_3 < H_2S < NH_3$
- **D**)  $NH_3 < CHCl_3 < H_2S < NF_3$
- E)  $CHCl_3 < H_2S < NF_3 < NH_3$

Correct Answer : Option A

126. Choose the INCORRECT pair of MOLECULE and its SHAPE among the following:

- A)  $SF_4$  Seesaw
- в)  $BrF_5$  Trigonal bipyramidal
- c)  $NH_3$  Trigonal pyramidal
- **D**)  $XeF_4$  Square planar
- E)  $ClF_3$  T-shape

Correct Answer : Option B

- **127.** In the reaction  $3/2 O_{2(g)} \rightarrow O_{3(g)}$ , the value of  $\Delta_r G^{\Theta}$  at 298 K is approximately  $(K_p = 10^{-30} \text{ and } 2.303 RT = 5.7 k Jmol^{-1})$ 
  - **A**) 171 kJ  $mol^{-1}$
  - **B**) 191 kJ *mol*<sup>-1</sup>
  - **c**) -171 kJ  $mol^{-1}$
  - **D**) -191 kJ *mol*<sup>-1</sup>
  - **E**) 100 kJ  $mol^{-1}$

Correct Answer : Option A

**128.** Which of the following has least mean multiple bond enthalpy (in kJ  $mol^{-1}$ ) at 298 K?

- A)  $N \equiv N$
- B)  $C \equiv N$
- **c**) C = C
- D)  $C \equiv O$
- E) C = N

Correct Answer : Option C

129. Which of the following can act as Lewis acid?

- A)  $H_2O$
- в) НО<sup>-</sup>
- **c**) *F*<sup>-</sup>
- D)  $NH_3$
- E)  $AlCl_3$

Correct Answer : Option E

- **130.** The concentration of hydrogen ions in a sample of soft drink is  $2 \times 10^{-4}$  mol *lit*<sup>-1</sup>. Its pH value is (log 2 = 0.3010)
  - **A**) 4.369
  - **B**) 3.699
  - **c**) 2.369
  - **D**) 5.301
  - **E**) 3.301

Correct Answer : Option B

**131.** Which of the following is the correct order of conductivity (in S  $m^{-1}$ )?

- A) Fe < Na < Cu < Ag
- B) Fe < Cu < Na < Ag
- **c**) Ag < Na < Cu < Fe
- D) Ag < Cu < Na < Fe
- E) Na < Fe < Cu < Ag</p>

Correct Answer : Option A

- 132. 'Layer Test' is used to identify
  - A) Bromide
  - B) Fluoride
  - c) Potassium
  - D) Water
  - E) Chloride

Correct Answer : Option A

**133.** Which of the following solvent has highest value of Molal elevation constant,  $K_b$ ?

- A) Cyclohexane
- B) Carbon disulphide
- c) Carbon tetrachloride
- D) Acetic acid
- E) Chloroform

Correct Answer : Option C

The initial concentration of  $N_2O_5$  in the first order reaction,  $N_2O_{5(g)} \rightarrow 2NO_{2(g)} +$ 

- **134.**  $\frac{1}{2} O_{2(g)}$ , was  $1.68 \times 10^{-2}$  mol  $L^{-1}$  at 310 K. The concentration of  $N_2O_5$  after 10 minutes was  $0.84 \times 10^{-2}$  mol  $L^{-1}$ . What is the rate constant of the reaction at 310 K? (log 2 = 0.3010)
- A) 0.0693 min<sup>-1</sup>

- **B**) 0.693 min<sup>-1</sup>
- c) 6.93  $min^{-1}$
- **D**) 0.0639  $min^{-1}$
- E) 0.0963  $min^{-1}$

Correct Answer : Option A

**135.** Which of the following statement is not true about a catalyst?

- A) It catalyses the spontaneous reactions
- B) A small amount of the catalyst can catalyse the large amount of reactants.
- c) It does not alter the Gibbs energy of a reaction.
- **D**) It catalyses the non-spontaneous reactions.
- E) It does not change the equilibrium constant of a reaction.

Correct Answer : Option D

136. The most common oxidation states of chromium are

- A) +2,+7
- **B)** +3,+6
- **c**) +2,+4
- **D**) +2,+5
- E) +3,+5

Correct Answer : Option B

**137.** Which of the following statement is true about potassium permanganate?

- A) It is isostructural with  $KClO_3$ .
- **B**) It is paramagnetic in nature.
- c) It oxidizes oxalates to carbon monoxide.
- **D**) The structure of permanganate ion is square planar.
- E) It is prepared by fusion of  $MnO_2$  with an alkali metal hydroxide and an oxidising agent.

# Correct Answer : Option E

138. The type of sulphide formed by Lanthanoids is

- A)  $LnS_3$
- B)  $LnS_2$
- c) LnS
- D)  $Ln_2S_3$
- E)  $Ln_2S$

Correct Answer : Option D

**139.** In which of the following compound, Mn has +7 oxidation state?

- A) MnOF
- B)  $MnO_2F$
- c)  $MnO_3F_2$
- D)  $MnOF_2$
- E)  $MnO_3F$

Correct Answer : Option E

- **140.** Which of the following is a heteroleptic complex?
  - A)  $[Co(NH_3)_6]^{3+}$
  - **B**)  $[Fe(CN)_6]^{4-}$
- c)  $[Co(SCN)_4]^2$
- **D**)  $[Co(NH_3)_4Cl_2]^+$
- E)  $[Co(CN)_6]^{3-}$

Correct Answer : Option D

- 141. Which of the following technique is used to separate chloroform and aniline?
  - A) Fractional distillation
  - B) Distillation under reduced pressure
  - c) Steam distillation
  - D) Continuous extraction
  - E) Distillation

Correct Answer : Option E

**142.** In Kolbe's electrolytic method, when sodium acetate is electrolysed, the gases generated at anode are

- A) ethane and  $H_2$
- **B**)  $H_2$  and  $CO_2$
- c) methane and ethane
- **D**) ethane and  $CO_2$
- E) methane and  $H_2$

Correct Answer : Option D

**143.** The number of sigma ( $\sigma$ ) and pi ( $\pi$ ) bonds present in 3-Methylbut-1-ene are respectively

- A) 1 and 14
- **B**) 18 and 2
- **c**) 16 and 2

- **D**) 17 and 1
- E) 14 and 1

Correct Answer : Option E

**144.** The order of reactivity of the following compounds towards  $S_N 2$  displacement reaction is (i) 2-Bromo-2-methylbutane (ii) 1-Bromopentane (iii) 2-Bromopentane

- **A**) (ii) > (i) > (iii)
- **B**) (iii) > (i) > (ii)
- **c**) (ii) > (iii)> (i)
- **D**) (i) > (ii) > (iii)
- **E**) (iii) > (ii) > (i)

Correct Answer : Option C

145. The IUPAC name of phenyl isopentyl ether is

- A) 3-Methtylbutoxybenzene
- **B**) 2-Methylbutoxybenzene
- c) 2-Methylphenoxybutane
- **D**) 4-Methylbutoxybenzene
- E) 1-Methylbutoxybenzene

Correct Answer : Option A

**146.** Phenol on treatment with chloroform in the presence of NaOH, a -CHO group is introduced at ortho position of benzene ring. The reaction is known as

- A) Kolbe's reaction
- B) Reimer-Tiemann reaction
- c) Gattermann-Koch reaction
- D) Stephen reaction
- E) Sandmeyer reaction

Correct Answer : Option B

Toluene on treatment with chromic oxide in presence of acetic anhydride at 273 - 283 K **147.** gives compound(X). Compound(X) on hydrolysis with aqueous acid gives compound(Y).

- The compounds (X) and (Y) are respectively
- A) Benzylidene diacetate and phenol
- **B**) Benzylalcohol and benzene
- c) Benzylidene diacetate and benzaldehyde
- **D**) Benzene and phenol
- E) Benzaldehyde and phenol

Correct Answer : Option C

148. Fehling's reagent is a mixture of

A) aqueous  $CuSO_4$  and ammonical  $AgNO_3$  solution

- **B**) aqueous  $CuSO_4$  and 2,4-DNP
- **c**) aqueous KOH and ammonical  $AgNO_3$  solution
- **D**) aqueous  $CuSO_4$  and alkaline sodium potassium tatarate
- E) aqueous KOH and alkaline sodium potassium tatarate

Correct Answer : Option D

The order of basic strength of following amines is **149.** (i)  $CH_3NH_2$  (ii)  $(C_2H_5)_2NH$  (iii) $C_6H_5NH_2$  (iv) $C_6H_5NHCH_3$ 

- **A**) (ii) < (i) < (iv) < (iii)
- **B**) (iii) < (iv) < (ii) < (i)
- **c**) (ii) < (iii) < (iv) < (i)
- **D**) (i) < (ii) < (iii) < (iv)
- **E**) (iii) < (iv) < (i) < (ii)

Correct Answer : Option E

150. The disease caused by the deficiency of riboflavin is

- A) Cheilosis
- B) Rickets
- c) Beri beri
- D) Scurvy
- E) Xerophthalmia

Correct Answer : Option A