FINAL ANSWER KEY

Question Paper Code: 12/2025/OL Exam:KEAM 2025 ENGG-3 Date of Test: 26-04-2025

- **1.** The relation $R = \{(1,3), (2,3), (2,4), (3,1)(4,4)(4,1)\}$ on the set $X = \{1,2,3,4\}$ is
- A) a1-1function
- B) reflexive
- c) transitive
- D) not symmetric
- E) an onto function

Correct Answer : Option D

- **2.** If two sets *A* and *B* are having 11 elements in common, then the number of elements common to $A \times B$ and $B \times A$
 - a) 121
 - в) 22
 - c) 99
 - d) 11
 - e) 33

Correct Answer : Option A

- **3.** The domain of the function $f(x) = \sqrt{x^2 + x 2}$ is
- A) $(-\infty, -2) \cup [1, \infty)$
- B) $(-\infty, -2] \cup (1,\infty)$
- c) $(-\infty, -2) \cup (1, \infty)$
- D) $(-\infty, -2] \cup [1, \infty)$
- E) $(-\infty,1) \cup [0,\infty)$

Correct Answer : Option D

- **4.** The range of the function $f(x) = \sqrt{x^2 + 4x + 4}$ is
 - **A**) [0,∞)
 - в) [1,∞)
 - **c**) [3,∞)
 - **D**) [2,∞)
 - E) [4,∞)

Correct Answer : Option A

Let *s*, *t*, *r* be non-zero distinct positive real numbers. If the complex number z = x + iy

- 5. satisfies
 - $sz + t\overline{z} + r = 0$, then z lies on
 - A) imaginary axis
 - real axis B)
 - c) y = x
 - y = 2xD)
 - x + y = 0E)

Correct Answer : Option B

- Let z = x + iy be a complex number, where $i = \sqrt{-1}$ is the complex unit. Then |z 1 + i|6. = 5 is a circle with
 - centre at (-1,1) and radius 5 A)
 - centre at (1,1) and radius $\sqrt{5}$ B)
 - centre at (-1,-1) and radius $\sqrt{5}$ C)
 - centre at (1,1) and radius 25 D)
 - centre at (1,-1) and radius 5 E)

Correct Answer : Option E

Let z be a complex number such that $z^3 + iz^2 - iz + 1 = 0$ where $i^2 = -1$. Then |z| =7.

- A) 2
- $\frac{1}{2}$ B)
- 1 C)
- 1 D) 4
- 3 E)

Correct Answer : Option C

8.	Real part of $\frac{1+\sin\frac{2\pi}{27}-i\cos\frac{2\pi}{27}}{1+\sin\frac{2\pi}{27}+i\cos\frac{2\pi}{27}}$ is equal to
A)	$\cos\frac{2\pi}{27}$
B)	$sin\frac{2\pi}{27}$
C)	$1 + \sin \frac{2\pi}{27}$
D)	$1 + \cos \frac{2\pi}{27}$
E)	$\sin\frac{2\pi}{27} + \cos\frac{2\pi}{27}$

Correct Answer : Option B

- The 25th term of 9,3,1, $\frac{1}{3}$, $\frac{1}{9}$,...is 9.
 - **A)** $\frac{1}{3^{24}}$
 - **B**) $\frac{1}{3^{25}}$

 - **C**) $\frac{1}{3^{23}}$
 - $\frac{1}{3^{22}}$ D)

 - E) $\frac{1}{3^{26}}$

- **10.** The first three terms in a G.P. are , a, b and c where $a \neq b$ Then the fifth term is
- $\frac{c^2}{2a}$ A)
- $\frac{c}{2a}$ B)
- C)
- $\frac{c^2}{a} \\ \frac{c^2}{3a}$
- D)
- <u>с</u> 3а E)

Correct Answer : Option C

- The sum of first *n* terms of a G.P. is 1023. If the first term is 1 and the common ratio is 2, 11. then the value of *n* is
- 12 A)
- 11 B)
- 10 C)
- 9 D)
- 8 E)

Correct Answer : Option C

- Let G_1, G_2, G_3 be geometric means between l and n, where l and n are positive real 12. numbers. Then the common ratio is
 - A) $\frac{n}{l}$
 - **B**) $\left(\frac{n}{l}\right)^{1/2}$
 - $\left(\frac{n}{l}\right)^{1/3}$ C)

D)
$$\left(\frac{n}{l}\right)^{\nu}$$

$$\mathsf{E}) \quad \frac{n^2}{l^2}$$

- 25 distinct objects are divided into 5 groups and each group consists of exactly 5 objects. 13. Then the number of ways of forming such groups, is
 - $\frac{25!}{(5!)^5}$ **A**)
 - 25! 5!
 - B)
 - $\frac{25!}{(5!)^6}$ C)

 - $\frac{25!}{(5!)^4}$ D)
 - $\frac{25!}{(5!)^3}$ E)

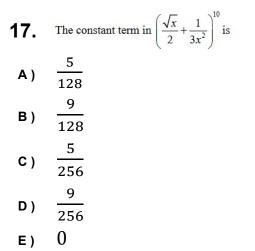
Correct Answer : Option C

14. $1 + {}^{100}C_1 + {}^{100}C_2 + \ldots + {}^{100}C_{99} + 1 =$

- **A**) 2⁹⁹
- в) 2¹⁰¹
- c) 2⁹⁸
- 2^{100} D)
- 100^{2} E)

Correct Answer : Option D

15. The coefficient of x^{10} in $(1 - x^2)(1 - x^3)^9 is$


- A) ${}^{9}C_{4}$
- **B**) $-{}^{9}C_{6}$
- c) $-{}^{9}C_{4}$
- D) ${}^{9}C_{6}$
- 0 E)

Correct Answer : Option E

 $^{21}C_1 + ^{21}C_2 + \ldots + ^{21}C_{10} =$ 16. A) 2^{20} **B**) 2²¹ c) $2^{21} - 1$ **D**) $2^{21} - 2$

E) $2^{20} - 1$

Correct Answer : Option E

Correct Answer : Option C

18. Let B be a matrix of order 3×2 and C be a matrix of order 3×3 . If A is a matrix such that BA = C, then the order of A is

- A) 2×2
- в) 2×3
- **c**) 3×2
- D) 3×4
- E) 3×3

Correct Answer : Option B

19. Let $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ and $Q = \begin{pmatrix} 2 & 1 & 2/3 \\ 0 & 4 & 4/3 \\ 0 & 0 & 6 \end{pmatrix}$. Then the det(QPQ^{-1}) is equal to **A**) **12 B**) **8 C**) **48 D**) **24**

E) 6

Correct Answer : Option E

20. Let
$$A = \begin{pmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{pmatrix}$$
 and $P = \frac{1}{2}(A + A^{T})$. Then
A) $P^{T} = P$
B) $P^{T} = -P$

- c) $P^T = 2P$
- **D**) $P^{T} = -2P$

E) $P^{T} = 3P$

Correct Answer : Option A

21. $sec^{2}x + cosec^{2}x - sec^{2}xcosec^{2}x =$ A) $sec^{2}x$ B) $COSeC^{2}x$ C) $cot^{2}x$ D) 1 E) 0

Correct Answer : Option E

22. Let *x* be a real number such that 7x + 4 < 9x + 8. Then the solution set of the inequality is

- A) $(-\infty, -2)$ B) $(-\infty, -4)$
- $\mathbf{B} = \begin{pmatrix} -\infty, -4 \\ -\infty \end{pmatrix}$
- c) $(-2,\infty)$
- D) $[-2,\infty)$
- E) [−1,∞)

Correct Answer : Option C

- 23. Let x be a real number such that $\frac{3(x+3)}{7} \le \frac{6(x-1)}{5}$ Then the solution set of the inequality is
 - A) $\left(-\infty, \frac{29}{9}\right)$ B) $\left(\frac{29}{9}, \infty\right)$ $\left[29\right)$
 - c) $\left[\frac{29}{9},\infty\right)$ D) $\left(-\infty,\infty\right)$
 - **E**) $\left(\begin{array}{c} \infty, \infty \end{array}\right)$

Correct Answer : Option C

24. $sin15^{\circ}sin45^{\circ}sin75^{\circ} =$ **A**) $\frac{1}{2\sqrt{2}}$ **B**) $\frac{1}{4\sqrt{2}}$

C)
$$\frac{1}{3\sqrt{2}}$$

D) $\frac{1}{4\sqrt{3}}$
E) $\frac{1}{\sqrt{3}}$

25. If $\sin \theta = \frac{1}{5}$ and the angle θ is in the second quadrant, then $\sec \theta$ is equal to A) $\frac{5}{2\sqrt{6}}$ B) $\frac{-2\sqrt{6}}{5}$ C) $\frac{2\sqrt{6}}{5}$ D) $\frac{\sqrt{6}}{5}$ E) $\frac{-5}{2\sqrt{6}}$

Correct Answer : Option E

26.
$$2^{2} \sin\left(\frac{x}{2^{2}}\right) \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{2^{2}}\right) =$$

A) $\sin 2x$
B) $\sin x$
C) $\cos 2x$
D) $\cos^{2} x$
E) $\sin \frac{x}{2}$

Correct Answer : Option B

27.
$$\frac{\cos 75^{\circ} - \cos 15^{\circ}}{\cos 75^{\circ} + \cos 1^{\circ}}$$
A)
$$\frac{-1}{\sqrt{3}}$$
B)
$$\frac{1}{\sqrt{2}}$$
C)
$$\frac{1}{\sqrt{3}}$$
D)
$$\frac{-1}{\sqrt{2}}$$
E) $\sqrt{3}$

28.	$(2\sin\alpha)(1+\sin\alpha)$
20.	$(1+\sin\alpha+\cos\alpha)(1+\sin\alpha-\cos\alpha)$
A)	tanα
B)	$\frac{\sin\alpha + 1}{\sin\alpha - 1}$
C)	1
D)	2
E)	$\frac{\cos\alpha + 1}{\cos\alpha - 1}$

Correct Answer : Option C

29.	If $\sin^{-1}\left(\frac{x}{1+x}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{1}{2}\right)$, then x is equal to
A)	$\frac{1}{2}$
B)	2
C)	3
D)	1
E)	$\frac{1}{4}$

Correct Answer : Option D

30.	If $tan^{-1}x = tan^{-1}(3) - \frac{\pi}{4}$, then x is equal to
A)	$\frac{1}{2}$
B)	$\frac{1}{4}$
C)	1
D)	3
E)	2

Correct Answer : Option A

31. If the distance of the line 4x - 3y + k = 0 from the point (1, 2) is 5 units, then the values of k are

- **A**) 27,-23
- **B**) -27,23
- **C**) 29,-24
- **D**) -29,24
- **E**) -28,-25

Correct Answer : Option A

- **32.** Two sides of a parallelogram are along the lines x + y = 5 and x y = -5. If the diagonals of the parallelogram intersects at (3, 6) then one of its vertices, is at
- **A**) (6,5)
- в) (7,6)
- **C**) (7,5)
- **D**) (6,7)
- **E**) (5,7)

- **33.** Let ax + by + c = 0 the equation of a straight line such that 3a + 2b + 4c = 0. Which one of the following points, lies on the line?
- A) $\left(\frac{3}{4}, \frac{1}{2}\right)$ B) $\left(\frac{1}{2}, \frac{3}{4}\right)$ C) $\left(\frac{1}{4}, \frac{3}{2}\right)$
- **D**) $\left(\frac{3}{2},\frac{1}{2}\right)$
- **E**) (2,4)

Correct Answer : Option A

- **34.** If two diameters of a circle are along the lines 2x 3y = 5 and 3x 4y = 7, then the centre is at
 - A) (1,1)
 - в) (-1,1)
 - **c**) (-1,-1)
 - D) (1,-1)
 - E) (1,-2)

Correct Answer : Option D

35. Let $y^2 = 8x$ be the equation of a parabola. Which one of the following is an arbitrary point on the parabola?

- A) $(2t, 4t^2), t \in \mathbb{R}$
- **B**) $(2t^2, 4t^2), t \in \mathbb{R}$
- **C**) $(2t^2, 2t^2), t \in \mathbb{R}$
- **D**) $(2t, 2t^2), t \in \mathbb{R}$
- **E**) $(2t^2, 4t), t \in \mathbb{R}$

Correct Answer : Option E

36. Let *P* be any point on the ellipse $4(x + 2)^2 + 9(y - 4)^2 = 144$. If F_1 and F_2 are the Foci of the ellipse, then $F_1P + F_2P =$

- **A**) 8
- **B**) 12
- **c**) 16
- **D**) 6
- **E)** 10

37. The eccentricity of the hyperbola $\frac{(x-1)^2}{25} - \frac{(y+2)^2}{11} = 1$ is **A**) $\frac{5}{3}$ **B**) $\frac{25}{11}$ **C**) $\frac{6}{5}$ **D**) $\frac{7}{5}$ **E**) $\frac{5}{11}$

Correct Answer : Option C

- **38.** Let $\vec{a}, \vec{b}, \vec{c}$ be any three vectors and m, n be scalars. Which one of the following is not true?
 - A) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ B) $m(\vec{a} + \vec{b} + \vec{c}) = m\vec{a} + m\vec{b} + m\vec{c}$
 - **C**) $(m+n)\vec{a} = m\vec{a} + n\vec{a}$
 - **D**) $m\left(\vec{a} \cdot \vec{b} = m\vec{a} \cdot m\vec{b}\right)$
 - **E**) $m(\vec{a} \times \vec{b} = m\vec{a} \times \vec{b})$

Correct Answer : Option D

- **39.** If $\vec{a} \cdot \vec{b} = 12$, then $(3\vec{a}) \cdot (3\vec{b})$ is equal to **A**) 36 **B**) 4
 - **c**) 108
 - **D**) 16
 - E) 144

Correct Answer : Option C

40. Let $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$. Then $(\vec{a} + \vec{b}) . (\vec{a} - \vec{b}) =$ **A**) 6

- в) 7
- c) 8
- d) 9
- e) 10

- **41.** $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be non-zero vectors such that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$. Then
 - A) $\vec{a} \vec{d}$ is parallel to $\vec{b} \vec{c}$
 - **B**) $\vec{a} \vec{b}$ is parallel to $\vec{b} \vec{c}$
 - **C**) $\vec{b} \vec{c}$ is parallel to $\vec{b} + \vec{c}$
 - **D**) $\vec{a} \vec{c}$ is parallel to $\vec{b} \vec{c}$
 - **E**) $\vec{a} + \vec{c}$ is parallel to $\vec{b} + \vec{d}$

Correct Answer : Option A

- **42.** Let $\overrightarrow{OP} = 2\hat{j}$ be the position vector a point P. Let $\overrightarrow{r} = \hat{j} + \lambda (\hat{i} + \hat{j})$ be a straight line. The distance of the point P from the line is
 - A) $\frac{\sqrt{2}}{2}$ B) $\frac{\sqrt{3}}{3}$ C) $\frac{\sqrt{6}}{3}$ D) $\frac{\sqrt{2}}{3}$ E) $\frac{\sqrt{2}}{4}$

Correct Answer : Option A

43. The Cartesian equation of the line $\vec{r} = (2^{\Lambda}_{l} - 7^{\Lambda}_{j} + 11^{\Lambda}_{k}) + \lambda$ $(3^{\Lambda}_{l} + 7^{\Lambda}_{j} - 13^{\Lambda}_{k})$ is A) $\frac{x-2}{3} = \frac{y+7}{7} = \frac{z-11}{-13}$ B) $\frac{x-2}{3} = \frac{y-7}{7} = \frac{z-11}{13}$ C) $\frac{x+2}{3} = \frac{y-7}{7} = \frac{z+11}{-13}$ D) $\frac{x+2}{3} = \frac{y+7}{7} = \frac{z-11}{-13}$ E) $\frac{x+2}{3} = \frac{y}{13} = \frac{z-11}{-7}$

Correct Answer : Option A

Which one of the following is a point on the straight line $\vec{r} = (13\hat{\iota} - 14\hat{j} + 23\hat{k}) + \lambda (5\hat{\iota} - 7\hat{j} - 9\hat{k}), \lambda \in \mathbb{R}$ 44.

- (13, -14, -23)A)
- (5, -7, -9)B)
- C) (23, -28, 7)
- (23, -28, 5)D)
- E) (13, 14, 23)

Correct Answer : Option D

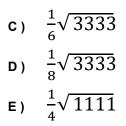
The point at which the line $\frac{x+3}{11} = \frac{y-2}{-1} = \frac{z+1}{3}$ meets the zx -plane is 45.

- **A**) (19, 2, 5)
- B) (19,0,5)
- C) (0,2,-1)
- (-3,2,0)D)
- (0,2,-1)E)

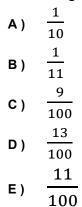
Correct Answer : Option B

- **46**. The mean deviation about the mean from the data 400,410, 420,430,440 is
 - 14 A)
 - 10 B)
 - C) 20
 - D) 12
 - E) 16

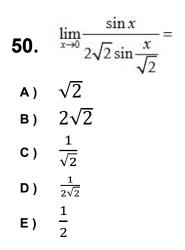
Correct Answer : Option D


47. An unbiased die is thrown and B is an event showing an odd number on top. Then P(B)

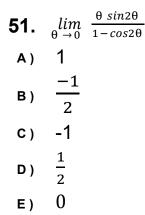
 $\frac{1}{4}$ A) $\frac{1}{3}$ B) $\frac{1}{6}$ C) 1 2 D) $\frac{1}{5}$ E)


Correct Answer : Option D

48. The standard deviation of 1,2,3,...,100 is


A)
$$\frac{1}{2}\sqrt{3333}$$

B) $\frac{1}{4}\sqrt{3333}$


49. Consider the random experiment that an integer is chosen from the first 100 positive integers. Probability that the chosen number is a multiple of 11, is

Correct Answer : Option C

Correct Answer : Option E

52. The function $f(x) = x(\sqrt{x+2} + \sqrt{x+1})$ is continuous on

- **A**) $(-\infty, 1]$
- **B**) [4,∞)
- **c**) [-3,∞)
- D) [-1,∞)
- **E**) (-∞,∞)

Correct Answer : Option D

53. $\lim_{x \to 2} \frac{\sin x \cos 2 - \cos x \sin 2}{x - 2} =$ **A**) -1 **B**) 1 **C**) 4 **D**) 2 **E**) 0

Correct Answer : Option B

- **54.** Let $f(x) = [x], x \in (0, 6)$, where [x] is the greatest integer function. Then the number of discontinuities of f(x)
- **A**) 1
- **B**) 2
- **C**) 3
- **D**) 4
- **E)** 5

Correct Answer : Option E

55. Let f(x) = 10 - |x - 5|, $x \in \mathbb{R}$, Then f(x) is not differentiable at

- A) x=10
- **в**) x=15
- **c**) x=-5
- D) X=5
- E) X=-15

Correct Answer : Option D

56. For $x \in \mathbb{R}$, let $f(x) = log_3 - sinx$ and g(x) = f(f(x)) Then g'(0)=

- A) sin(log3)
- **B**) -*sin*(*log*3)
- c) -cos(log3)
- D) 2cos(log3)

E) cos(log3)

Correct Answer : Option E

57. If
$$y = \cos x \cos y$$
, then $\frac{dy}{dx} = \operatorname{at} \left(\frac{\pi}{3}, \frac{\pi}{6}\right)$ is
A) $\frac{-3}{5}$
B) $\frac{3}{5}$
C) $\frac{5}{3}$
D) $\frac{-5}{3}$

Correct Answer : Option A

58. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then $f'''(3) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then $f'''(3) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$, then $f'''(3) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$. **A**) 3 **B**) 6 **C**) 9 **D**) -2

E) f"(2)

Correct Answer : Option B

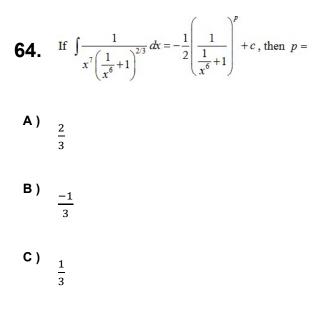
59. If $u = \sec^{-1}(-\sec 2\theta)$ and $v = \cos \theta$, then $\frac{du}{dv}$ at $\theta = \frac{\pi}{4}$, is equal to A) $\sqrt{2}$ B) $2\sqrt{2}$ C) $\frac{1}{\sqrt{2}}$ D) $\frac{1}{2\sqrt{2}}$ E) $-\sqrt{2}$

Correct Answer : Option B

60. The function $f(x) = e^x - x$ is increasing in the interval

- A) (0, 4)B) $(-\infty, 0)$
- c) (-1,1)
- D) (-1,0)
- E) (0,∞)

- **61.** Let f(x) = 10 |x 3|, $x \in \mathbb{R}$ The maximum of f(x) occurs at
 - **A**) x=0
 - **B**) x=3
 - **c**) x=-3
 - **D**) x=10
 - E) x=1


Correct Answer : Option B

- **62.** The distance travelled by a moving particle is given by $s = \frac{t^2}{2} 6t + 8$, where *t* denotes the time in seconds. The velocity becomes zero when *t* is equal to
 - **A**) 1
 - **B**) 4
 - **C**) 3
 - **D**) 6
 - **E**) 8

Correct Answer : Option D

- **63.** If a + b = 10 and ab is maximum, then the value of a is
 - A) 5
 - в) З
 - c) 6
 - **D**) 25
 - E) 10

Correct Answer : Option A

D)
$$\frac{-2}{3}$$

E)
$$\frac{1}{6}$$

65.
$$\int \frac{\sec x}{(\sec x + \tan x)^9} dx =$$
A)
$$\frac{1}{9} (\sec x + \tan x)^9 + C$$
B)
$$\frac{-1}{9} (\sec x + \tan x)^9 + C$$
c)
$$\frac{-1}{9} (\sec x + \tan x)^{-9} + C$$
D)
$$\frac{1}{9} (\sec x + \tan x)^{-9} + C$$
E)
$$(\sec x + \tan x)^{-9} + C$$

Correct Answer : Option C

66.
$$\int \frac{(9e^{x} + 4e^{-x})}{(9e^{x} - 4e^{-x})} dx =$$
A) $9e^{x} - 4e^{-x} + C$
B) $\log|9e^{x} + 4e^{-x}| + C$
C) $4e^{x} - 9e^{-x} + C$
D) $\log|4e^{x} - 9e^{-x}| + C$
E) $\log|9e^{x} - 4e^{-x}| + C$

Correct Answer : Option E

67.
$$\int e^{2\theta} (2\cos^2\theta - \sin 2\theta) d\theta =$$

A)
$$e^{2\theta} \cos^2\theta + C$$

B)
$$e^{2\theta} \sin 2\theta + C$$

C)
$$2e^{2\theta} \cos^2\theta + C$$

D)
$$e^{2\theta} \sin \theta + C$$

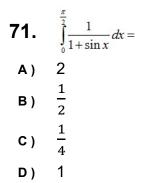
E) $e^{2\theta}cos2\theta + C$

Correct Answer : Option A

$$68. \quad \int e^{\left(x+\frac{1}{x}\right)} \left(\frac{x^2-1}{x^2}\right) dx =$$

A) $xe^{\left(x+\frac{1}{x}\right)}+C$ B) $e^{\left(x+\frac{1}{x}\right)}+C$ C) $x+e^{\left(x+\frac{1}{x}\right)}+C$ D) $x^2e^{\left(x+\frac{1}{x}\right)}+C$ E) $e^{\left(x+\frac{1}{x}\right)}+x^2+C$

Correct Answer : Option B


69. The area bounded by y = x - 1, $1 \le x \le 2$, y = 0 (in sq.units) is

- а) 2 в) 1
- $\begin{array}{c} c \\ \hline \\ D \\ \end{array} \right) \quad \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$
- E) $\frac{1}{4}$

Correct Answer : Option C

70. Given that
$$\int_{0}^{1} \tan^{-1}(t) dt = \frac{\pi}{4} - \frac{1}{2} \log 2$$
. Then $\int_{0}^{1} \tan^{-1}(1-t) dt =$
A) $\frac{\pi}{2} - \frac{1}{2} \log 2$
B) $\frac{\pi}{4} - \frac{1}{2} \log 3$
c) $\frac{\pi}{4} + \frac{1}{2} \log 2$
D) $\frac{\pi}{4} + \frac{1}{2} \log 2$
E) $\frac{\pi}{4} - \frac{1}{2} \log 2$

Correct Answer : Option E

E) 0

Correct Answer : Option D

72.
$$\int_{-2}^{2} |x+3| dx =$$

A) 14
B) 16
C) 8
D) 10
E) 12

Correct Answer : Option E

73. If
$$\frac{dy}{dx} = \frac{1}{8(\sqrt{16+\sqrt{25+\sqrt{x}}})(\sqrt{25+\sqrt{x}})\sqrt{x}}$$
, then $y =$
A) $\sqrt{16+\sqrt{25+\sqrt{x}}+C}$
B) $\sqrt{16+\sqrt{25+\sqrt{x}}+x+C}$
c) $\sqrt{16+\sqrt{25+\sqrt{x}}+x^2+C}$
p) $x\sqrt{16+\sqrt{25+\sqrt{x}}+C}$
E) $x^2\sqrt{16+\sqrt{25+\sqrt{x}}+C}$

Correct Answer : Option A

74. The elimination of arbitrary constants c_1, c_2, c_3 and c_4 from $y = (c_1 + c_2) \sin (x + c_3) - c_4$ e^x gives a differential equation of order

- **A**) 1
- в) 2
- **c**) 3
- **D**) 4
- E) 5

Correct Answer : Option C

- **75.** The maximum value of the objective function z = 2x + 3y, when the corner points of the feasible region are (0, 0), (5, 0), (4, 1) and (0, 2), is
 - **A**) 0
 - **B**) 6
 - **C**) 10

- **D**) 11
- **E**) 16

- **76.** The dimension of X in the equation, $F = 6\pi \eta X$ is (F Force; η -Coefficient of viscosity)
 - **A**) $M^0 L^2 T^{-1}$
 - **B**) ML^2T^{-2}
 - c) $M^0 L^2 T^{-2}$
 - D) $M^0 L^3 T^{-2}$
 - **E**) ML^2T^{-1}

Correct Answer : Option A

- **77.** One torr is
 - A) 1 mm of Hg
 - B) 1 cm of Hg
 - **c**) 76 mm of Hg
 - **D**) 100 mm of Hg
 - E) 76 cm of Hg

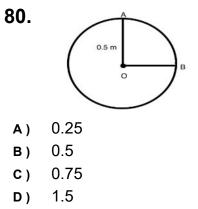
Correct Answer : Option A

A particle moving with an initial velocity of 1 ms^{-1} has an uniform acceleration of 2 m

- **78.** s^{-2} . The distances travelled by the particle in the first two intervals of 5 s are respectively
 - A) 30 m and 110 m
 - **B**) 50 m and 110 m
 - **c**) 40 m and 80 m
 - **D**) 30 m and 80 m
 - E) 60 m and 160 m

Correct Answer : Option D

When a cricketer hits a ball at an angle of 45° with an initial velocity of 40 ms^{-1} , the ball **79.** falls on the ground at a distance of 160 m. If he hits the ball at the same angle with an


initial velocity of 50 ms^{-1} the ball will fall at a distance of

- **A)** 480 m
- **B)** 180 m
- **c**) 280 m
- **D**) 300 m

E) 250 m

Correct Answer : Option E

A ball moves in a circle of radius 0.5 m from A to B in $\sqrt{2}$ s. The average velocity of the ball is (in ms^{-1})

E) 1.25

Correct Answer : Option B

A block of mass m suspended from the ceiling of a lift by an inextensible string of negligible mass. When the lift moves in the upward direction with an acceleration of 0.2 ms⁻², the tension acting on the wire is 80 N. Then the mass of the block is

- A) 1 kg
- **в**) 2 kg
- **c**) 8 kg
- **D**) 6 kg
- E) 4 kg

Correct Answer : Option C

82. The force to be applied to a body of mass 200 g to change its velocity by 25 ms^{-1} in 5 s is

- A) 2.5 N
- **B**) 50 N
- **c**) 3 N
- **D**) 30 N
- E) 1N

Correct Answer : Option E

- **83.** Two bodies having masses in the ratio 1:3 have equal linear momentum. Their respective kinetic energies are in the ratio
 - **A**) 3:1
 - в) 1:2
 - **C**) 1:3

- **D**) 4:1
- **E)** 2:1

- **84.** A particle moving in a horizontal circle of radius 0.5 m completes half rotation. The work done by the centripetal force of 5 N on the particle (in J) is
 - **A**) 2
 - **B)** 5
 - **C**) 2.5
 - **D**) 3
 - **E)** 1

Correct Answer:-Question Cancelled

- **85.** The moment of inertia and rotational kinetic energy of a rigid body about an axis are respectively 4 kgm^2 and 50 J. The angular velocity of the body (in rad s^{-1}) is
- **A**) 10
- **B**) 20
- **C**) 25
- **D**) 5
- **E**) 15

Correct Answer : Option D

- **86.** If a torque of 1.25 Nm acts on a circular ring for a duration of 4 *s*, then its angular momentum changes by $(\text{kgm}^2 s^{-1})$
 - **A**) 25
 - **B)** 50
 - **C**) 15
 - **D**) 5
 - **E**) 10

Correct Answer : Option D

- **87.** If the angular displacement made by a rotating wheel in 10 s is 150π radian, then the number of revolutions made by it is
 - **A**) 75
 - **B**) 100
 - **c**) 300
 - **D**) 150
 - **E**) 50

Correct Answer : Option A

- **88.** Two satellites A and B are orbiting the earth at a height of 2.5R and 7.5R respectively from the centre of the earth. The ratio of time periods of A and B is
- **A**) $\sqrt{3}:1$

- **B**) 1:3√3
- c) 1:√3
- D) $1: 2\sqrt{3}$
- **E**) $3\sqrt{3}:1$

The orbital velocity v_o of an artificial satellite revolving around the earth at a height R **89.** from the surface of the earth in terms of escape velocity v_e from the earth is (R - radius of the earth)

- A) $\frac{v_e}{2}$
- B) $\frac{v_e}{4}$
- C) $\frac{v_e}{\sqrt{2}}$
- D) v_e
- E) $\sqrt{2}v_e$

Correct Answer : Option A

90. P_a is the atmospheric pressure and P is the absolute pressure at a depth *h* in an ocean. The gauge pressure at the depth *h* is

A) $P + P_a$

B)
$$\frac{P-P_a}{2}$$

c) $2P - P_a$

D)
$$\frac{P+P_a}{2}$$

E) $P - P_a$

Correct Answer : Option E

- 91. The principle behind the function of Bunsen burner is
 - A) Pascal's law
 - B) law of flotation
 - c) venturimeter
 - D) Toricelli's law
 - E) Archemedes' principle

Correct Answer : Option C

- 92. Bernoulli's principle is applicable to
- A) non-viscous, incompressible fluids in streamline flow
- B) viscous, compressible fluids in streamline flow

- c) viscous, incompressible fluids in streamline flow
- D) non-viscous, incompressible fluids in turbulent flow
- E) non-viscous, compressible fluids in turbulent flow

- 93. Specific heat capacity of a substance depends on the
 - A) material of the substance only
 - B) volume of the substance only
 - c) mass of the substance only
 - D) material and temperature of the substance
 - E) mass and volume of the substance

Correct Answer : Option D

- 94. Which one is INCORRECT statement?
- A) In an isochoric process, volume remains constant
- B) In an adiabatic process, there is a heat exchange with the surrounding
- c) In an isobaric process, pressure remains constant
- **D**) In an isothermal process, temperature remains constant
- E) In a cyclic process, the change in internal energy is zero

Correct Answer : Option B

95. The number of molecules contained in the gas of mass *M* is $(M_o - \text{molar mass}, N_A - \text{Avogadro's number})$

A)
$$\left(\frac{M}{M_o}\right) \frac{1}{N_A}$$

B)
$$\left(\frac{M_o}{M}\right)N_A$$

C) $(MM_o)N_A$

D)
$$(MM_o)\frac{1}{N_A}$$

E) $\left(\frac{M}{M_o}\right)N_A$

Correct Answer : Option E

- **96.** If the mean free path of a gas molecule at 27 °C is 10×10^{-7} *m*. Its mean free path at 87 °C is
 - **A**) 12 x10⁻⁷ m
 - **B**) 8 x10⁻⁷ m
 - **c**) 6 x10⁻⁷ m
 - **D**) 10 x10⁻⁷ m
 - **E**) 14 x10⁻⁷ m

- If the speed of the transverse wave in a wire under certain tension T is u , then its speed 97. under tension 2T (in ms⁻¹) is
 - $\frac{v}{\sqrt{2}}$ A)
 - 2vB)
 - $\sqrt{2}v$ C)
 - $\frac{3v}{\sqrt{2}}$ D)

 - $\frac{v}{2}$ E)

Correct Answer : Option C

- **98.** A musician hits a drum 90 times in a minute. The time period of hit is
 - A) 1.34 s
 - 1.5 s B)
 - 0.33 s C)
 - 0.75 s D)
 - 0.67 s E)

Correct Answer : Option E

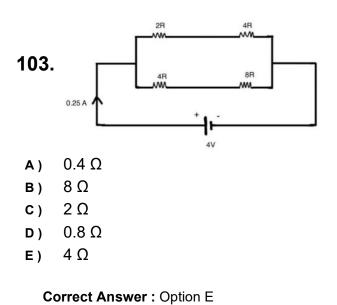
- If the time period of a particle executing SHM is 8 s, then the time period of the potential 99. energy of this particle is
 - 16 s A)
 - 4 s B)
 - 2 s C)
 - 8 s D)
 - E) 32 s

Correct Answer : Option B

- Which one of the following pairs of charges separated by the same distance r will 100. experience a maximum force?
 - 0.3 C and 0.7 C **A**)
 - 0.1 C and 0.9 C B)
 - C) 0.2 C and 0.8 C
 - 0.5 C and 0.5 C D)
 - 0.4 C and 0.6 C E)

Correct Answer : Option D

101. A charge of 5 C is moved from a point P to another point Q by doing a work of 10 J. If the potential at P is 0.5 V, then the potential at Q is


- **A**) 1.0V
- **B**) 2.0V
- **c**) 2.5 V
- **D**) 1.5V
- **E**) 3.0V

The equivalent capacitance of n capacitors of equal capacitance when connected in **102.** series and parallel are respectively 0.4 μ F and 10 μ F. The capacitance of each capacitor is

- **A**) 2μF
- **B**) 4μF
- **C**) 5 µF
- **D**) 6 µF
- **Ε**) 1μF

Correct Answer : Option A

The value of R in the given circuit is

104. The resistance of a wire at 30°C and 40°C are respectively 5 Ω and 6 Ω . The temperature coefficient of resistance of the material of the wire (in per degree Celcius) is

- **A**) 0.04
- **B**) 0.05
- **C**) 0.02
- **D**) 0.03
- **E**) 0.01

Correct Answer : Option B

105. A wire of 25 Ω resistance is cut into *n* pieces of equal length. If these pieces of wires are connected in parallel, their equivalent resistance is 1 Ω , then the value of *n* is

- **A**) 3
- **B**) 6
- **C**) 8
- **D**) 5
- E) 4

- **106.** A coil having 100 turns and an area of 0.02 m^2 is placed with its plane perpendicular to the magnetic field of 1 Wb m^{-2} . The magnetic flux linked with the coil is
 - A) zero
 - **B**) 1 Wb
 - **c**) 2 Wb
 - **D**) 3 Wb
 - E) 5 Wb

Correct Answer : Option C

- Two charged particles of same mass but having charges in the ratio 1: 4 enter a uniform **107.** perpendicular magnetic field. The ratio of their time period in their respective circular path is
- **A**) 1:4
- **B**) 1:8
- **c**) 8:1
- D) 4:1
- E) 2:1

Correct Answer : Option D

108. Which one is not a ferromagnetic material?

- A) cobalt
- B) tungsten
- c) nickel
- D) gadolinium
- E) iron

Correct Answer : Option B

109. If an inductor coil of self-inductance 2 H stores 25 J of magnetic energy, then the current I passing through it is

- **A**) 25 A
- **B**) 10A
- **C**) 15A
- D) 2A
- E) 5A

- **110.** When a current passing through a coil changes at the rate of $30 As^{-1}$, the emf induced in the coil is 12 V. The self-inductance of the coil is
 - **A**) 0.4 H
 - **B)** 0.2 H
 - **c**) 0.6 H
 - **D**) 0.3 H
 - E) 0.1 H

Correct Answer : Option A

- E = 15 sin $[1.57y + 5.4t]\hat{j}$ The wavelength of the wave is
- **A)** 4.0 m
- **B)** 3.0 m
- **c**) 2.5 m
- **D**) 2.0 m
- **E)** 1.0 m

Correct Answer : Option A

112. Chromatic aberration arises in thick lenses due to

- A) scattering of light
- B) refraction of light
- c) interference of light
- D) reflection of light
- E) dispersion of light

Correct Answer : Option E

113. An unpolarized light incident on a plane glass surface gets totally polarized on reflection. If the refractive index of glass is tan 57°, then the angle of refraction is

- A) 90°
- **B**) 33°
- **C**) 13°
- **D**) 37°
- E) 45°

Correct Answer : Option B

114. Light energy is redistributed in

- A) diffraction and interference
- B) reflection and diffraction
- c) refraction and interference

- **D**) reflection and polarisation
- E) polarization and refraction

- Which one of the following statements is INCORRECT?
- 115.

In photoelectric effect

- A) Threshold frequency is different for different metals
- B) The same metal gives same response to light of different wavelengths
- c) The emission of photoelectrons is an instantaneous process
- D) Above the threshold frequency the number of photoelectrons emitted per sec is directlyproportional to the intensity of incident radiation
- E) The maximum K.E. of the photoelectrons is independent of the intensity of incident radiation

Correct Answer : Option B

When an electron is accelerated from rest by a potential of 480 V, the wavelength **116.** associated with it is λ . If the electron at rest is accelerated by a potential of 120 V, then the wavelength associated with it is

- **A**) 5λ
- **B**) 4λ
- **C**) 2λ
- **D**) 3λ
- **E**) 6λ

Correct Answer : Option C

- **117.** In hydrogen spectrum, the shortest wavelength of Bracket series is produced during the transition between the states
 - A) $n_2 = 5$ and $n_1 = 4$
 - B) $n_2 = 4$ and $n_1 = 1$
 - **c**) $n_2 = 4$ and $n_1 = 3$
 - D) $n_2 = \infty$ and $n_1 = 4$
 - **E**) $n_2 = 4$ and $n_1 = 2$

Correct Answer : Option D

- **118.** A radioactive element having 6×10^5 atoms initially decays and is left with 0.75 x 10^5 undecayed atoms in 48 years. The half-life time of this radioactive element is
 - A) 16 years
 - B) 24 years
 - c) 12 years
 - D) 6 years
 - E) 18 years

119. The possible number of energy states in a Ge crystal containing 5×10^3 atoms is

- **A)** 2×10^4
- **B**) 4×10^4
- **c**) 4×10^4
- **D**) 3×10^4
- **E**) 5×10^4

Correct Answer : Option B

120. A pn junction diode without any voltage biasing acts as a

- A) rectifier
- B) resistor
- c) ac generator
- D) voltage regulator
- E) transformer

Correct Answer : Option B

121. How many moles of methane are required to produce 11 g $CO_{2(g)}$ after combustion? (Molar mass of $CO_2 = 44$ g mol⁻¹)

- **A**) 0.25
- **B**) 0.5
- **C**) 1.5
- **D**) 2.0
- E) 2.5

Correct Answer : Option A

122. A sub-atomic particle of mass 6.63×10^{-31} kg is moving with a velocity of 1×10^6 ms $^{-1}$. What is the de Broglie wave length (in *nm*) associated with it (h = 6.63×10^{-34} Js)?

- **A**) 10.0
- **B**) 1.0
- **c**) 0.10
- **D**) 5.0
- **E**) 0.50

Correct Answer : Option B

123. For hydrogen atom, the orbitals with the lowest energy among the given orbitals are (i) 4s (ii) $2p_{\chi}$ (iii) $3d_{z}2$ (iv) $2p_{y}$

- **A**) (i) & (iii)
- в) (ii) & (iv)

- **c**) (ii) & (iii)
- D) (ii) only
- E) (i) only

Which of the following species will have the largest and the smallest sizes respectively?

- 124.
 - Na, Mg, Na⁺, Mg²⁺
 - A) Mg and Na⁺
 - **B**) Mg and Mg^{2+}
 - c) Na and Mg^{2+}
 - D) Na and Mg
 - E) Na⁺ and Mg

Correct Answer : Option C

- **125.** Which of the following statement is INCORRECT?
- A) The dipole moment of BF_3 is zero.
- B) The bond order of CO molecule is the same as the bond order in NO⁺ ion.
- c) In ozone molecule, the two O-O bond lengths are equal.
- **D**) The dipole moment of NF_3 is much greater than that in NH_3
- E) Carbonate ion has three canonical forms.

Correct Answer : Option D

In which of following reactions entropy decreases?

126. (i)
$$2Pb(NO_3)_{2(s)} \rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$$

(ii) $H_2O_{(g)} \rightarrow H_2O_{(l)}$
(iii) $Br_{2(l)} \rightarrow 2Br_{(g)}$
(iv) $C_6H_{6(l)} \rightarrow C_6H_{6(s)}$

- **A**) (ii), (iii) and (iv)
- B) (i) and (iii)
- **c**) (i) and (iii)
- **D**) (i) and (iv)
- E) (ii) and (iv)

Correct Answer : Option E

The enthalpy of combustion values of $C_2H_{4(g)}$, C(graphite,s) and $H_{2(g)}$ are

- **127.** respectively -1411kJ mol⁻¹, -394 kJ mol⁻¹ and -286 kJ mo⁻¹. What is the value of enthalpy of formation of $C_2H_{4(g)}$ in kJ mol⁻¹?
 - **A**) -102

- **B) -**51
- **c**) +102
- **D**) +153
- **E)** +51

The following concentrations were obtained in the formation of $NH_{3(g)}$ from $N_{2(g)}$ and $H_{2(g)}$ at equilibrium at 500 K:

128. $[NH_3] = 1.5 \times 10^{-2} \text{ M}, [N_2] = 5 \times 10^{-3} \text{ M} \text{ and } [H_2] = 0.10 \text{ M}$ Calculate the equilibrium constant for the reaction (in dm⁶ mol⁻³) at 500 K.

 $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$

- **A**) 0.45
- **B**) 4.5
- **C**) 45.0
- **D**) 4.5×10^{-2}
- **E**) 4.5×10^{-3}

Correct Answer : Option C

129. Which of the following is a Lewis acid?

- A) HCI
- **B**) HO⁻
- **c**) H₂O
- D) Co^{3+}
- E) NH₃

Correct Answer : Option D

The EMF of the following cell at 298K is

130. $Mg_{(s)} | Mg^{2+}(aq) (0.10M) | | Ag^{+}(aq)(0.001M) | Ag_{(s)}$

(Given: E_{cell}^{0} =3.17V and 2.303RT/F = 0.06 V)

- **A**) 3.32V
- **B**) 2.96V
- **c**) 3.02V
- **D**) 3.17V
- **E)** 3.47V

Correct Answer : Option C

- 131. The electrolyte used in lead storage battery is
- A) 10% H_2SO_4 aqueous solution

- **B**) 60% H₂SO₄aqueous solution
- **c**) 38% H₂SO₄ aqueous solution
- **D**) 38% HCl aqueous solution
- E) 60% HCl aqueous solution

- **132.** The binary liquid mixture that has positive deviation from Raoult's law is
- A) Chloroform-Acetone
- B) Chloroethane-Bromoethane
- c) Phenol-Aniline
- D) Benzene-Toluene
- E) Ethanol-Acetone

Correct Answer : Option E

- **133.** A first order reaction has a rate constant of $6.93 \times 10^{-4} \text{ s}^{-1}$ at 300 K. What is the half life period of the reaction in seconds at the same temperature?
 - **A**) 693
 - **B**) 6930
 - **c**) 10000
 - **D**) 1000
 - **E**) 500

Correct Answer : Option D

134. Which of the following is true in respect of a zero order reaction?

- A) Plot of [Reactant] against time is a straight line with slope equal to k
- B) Plot of [Reactant] against time is a straight line with slope equal to -k
- c) Plot of [Reactant] against time is a straight line with slope equal to 2.303 k
- D) Plot of [Reactant] against time is a straight line with slope equal to -2.303 k
- E) Plot of [Reactant] against time is a straight line with slope equal to -k/2.303

Correct Answer : Option B

135. Which of the following 3d transition metal has +5 state as the more stable state?

- **A**) Titanium
- **B**) Vanadium
- c) Manganese
- D) Nickel
- E) Silver

Correct Answer : Option B

In acidic medium, dichromate behaves as an oxidizing agent which can be represented as

136. $Cr_{2O_7}^{2-} + xH^+ + ye^- \rightarrow 2Cr^{3+} + zH_2O$

The values of x, y and z are respectively

- **A)** 6, 7 and 14
- **B)** 7, 6 and 14
- **c**) 14, 6 and 7
- **D**) 14, 7 and 6
- E) 6,12 and 7

Correct Answer : Option C

137. Which of the following is not an interstitial compound?

- A) Sc_2O_3
- B) TiC
- **c**) Mn₄N
- **D**) TiH_{1.7}
- **E**) Fe₃H

Correct Answer : Option A

138. Which of the following transition metal has the highest magnetic moment?

- A) Sc^{3+}
- **B**) Ti³⁺
- c) Cr^{2+}
- D) Fe^{2+}
- E) Mn²⁺

Correct Answer : Option E

139. Which of the following complex is optically active?

A)
$$trans - [CrCl_2(ox)_2]^3$$

- **B**) $trans [PtCl_2(en)_2]^{2+}$
- c) cis $[Pt(NH_3)_2]Cl_2$
- **D**) $trans [Pt(NH_3)_2]Cl_2$
- **E**) $cis [PtCl_2(en)_2]^{2+}$

```
Correct Answer : Option E
```

140. The number of bridging carbonyl groups in $[Mn_2(CO)_1]$ is

- **A**) 2
- в) О
- **c**) 4
- **D**) 3
- E) 1

- **141.** On complete combustion 0.12g of an organic compound gives 0.11g of CO_2 . What is the percentage of carbon in the organic compound?
- **A**) 15%
- **B**) 20%
- **C**) 25%
- **D**) 17.5%
- **E**) 21.5%

Correct Answer : Option C

142. One mole of an alkene reacts with acidic $KMnO_4$ to give two moles of ethanoic acid. What is the alkene?

- A) 2-Methylpropene
- B) 1-Butene
- c) 2-Pentene
- D) 2-Butene
- E) 2-Methyl-2-butene

Correct Answer : Option D

143. Which of the following is a vicinal dihalide?

- A) 1,1-Dibromopropane
- B) 1,2-Dibromopropane
- c) 1,3-Dibromopropane
- **D**) Benzal dibromide
- E) 1,3-Dibromobutane

Correct Answer : Option B

144. S_N 1 reaction is most favoured by

- A) Ethyl bromide
- B) 2-methyl-2-bromopropane
- c) 2-bromopropane
- D) 1-bromopropane
- E) 1-bromobutane

Correct Answer : Option B

145. Phenol is treated with Con. H_2SO_4 to gives a product 'X" which on treatment with Con. H_2NO_3 gives compound 'Y'. The compounds 'X' and 'Y' are respectively

- A) Phenol-2- sulphonic acid and 2-nitrophenol
- **B**) Phenol-2-sulphonic acid and 4-nitrophenol
- c) Phenol-2-sulphonic acid, mixture of 2-nitrophenol and 4-nitrophenol
- D) Phenol-2,4-disulphonic acid, mixture of 2-nitrophenol and 4-nitrophenol
- E) Phenol-2,4-disulphonic acid and picric acid

Correct Answer : Option E

146. Denatured alcohol with colour and foul smell is made now a days by mixing ethanol with

- A) Methanol
- **B**) $ZnSO_4$ and thiophene
- c) CuSO₄ and pyridine
- **D**) FeSO₄ and furan
- E) $Fe_2(SO_4)_3$ and hexane

Correct Answer : Option C

147. Benzoyl chloride is converted to benzaldehyde by

- A) Etard reaction
- B) Stephen reaction
- c) Gatterman reaction
- **D**) Gatterman Koch reaction
- E) Rosenmund reaction

Correct Answer : Option E

148. In which of the following liquid inter molecular hydrogen bonding does not exist?

- A) CH_3COOH
- в) C₂H₅OH
- c) Phenol
- D) Diethylether
- E) Ethylamine

Correct Answer : Option D

- 149. The IUPAC name of allylamine is
 - A) But-2-en-1-amine
 - B) But-1-en-2-amine
 - c) Prop-2-en-1-amine
 - D) Prop-1-en-2-amine
 - E) 2-Amino 1-propene

150. The carbohydrate found in yeast is

- A) lactose
- B) starch
- c) cellulose
- D) maltose
- E) glycogen

Correct Answer : Option E