FINAL ANSWER KEY

Question Paper Code: 15/2025/OL Exam: KEAM 2025 ENGG-ADL Date of Test: 29-04-2025

- Two finite sets A and B have m and n elements, respectively. The total number of subsets 1. of A is 48 more than the number of subsets of B. The values of m and n, respectively, are
- 6,3 A)
- B) 6,4
- 5,6 C)
- 2,6 D)
- 7,1 E)

Correct Answer: Option B

- Let A and B be subsets of universal set U such that n(U) 800,n(A)=300, n(B)=2. $n(A \cap B)$. Then the number of elements in the set $A' \cap B'$ is
- 50 A)
- 100 B)
- 700 C)
- 400 D)
- 200 E)

Correct Answer:-Question Cancelled

- If $f(x) = \frac{x}{x-1}$ then $\frac{f(a)}{f(a+1)}$ is equal to

- A) $f(a^2)$ B) f(-a)C) $f(-a^2)$
- **D**) $f\left(\frac{1}{a}\right)$
- E) $f\left(\frac{1}{a^2}\right)$

- If $f: R \to R$ satisfies the relation f(x + y) = f(x) + f(y), $\forall x, y \in R$ and f(1) = 34. f(0) + f(1) + f(2) + f(3) is equal to
- 12 A)
- 14 B)
- 16 C)
- 18 D)
- 22 E)

- If z = 2 + i, $i^2 = -1$, then the value of $z^2 4z + 15$ 5.
 - 2 A)
 - 6 B)
 - 15 C)
 - 12 D)
 - 10 E)

Correct Answer: Option E

- The modulus of the complex number $\left(\frac{i}{2} \frac{2}{i}\right)$ is equal to 6.
- 2 5 5 4 2 3 3 2 5 7 2 5 A)
- B)
- C)
- D)
- E)

Correct Answer: Option E

- If the complex number z varies so that the real and imaginary parts of z-2-3i are 7. equal, then the locus of z is
- a circle A)
- a straight line B)
- a parabola C)
- an ellipse D)
- a hyperbola E)

Correct Answer: Option B

- If k = 4n + 3, where n is an integer and $i^2 = -1$ then i^k is equal to 8.
 - 0 A)
 - 1 B)
 - -1 C)
 - D)
 - -iE)

- The sum of first three terms of a G.P. is 14 and the sum of next three terms is 112. Then 100 9. th term of the G.P. is
 - 2⁹⁹ A)
 - 2^{101} B)

- $c) 2^{100}$
- D) $2^{98} 1$
- E) $2^{99} + 1$

- **10.** The product of first four terms of a G.P. is 324 and the product of first three terms of the G.P. is 216. Then the first term is
- **A**) 3
- **B**) 6
- **c**) 9
- **D**) 16
- E) 12

Correct Answer: Option E

- 11. The product of first four terms of a G.P. is $\frac{1}{1024}$. Then the product of second and third terms is,
- **A)** $\frac{1}{28}$
- B) $\frac{1}{16}$
- **c**) $\frac{1}{64}$
- **D**) $\frac{1}{32}$
- E) $\frac{1}{128}$

Correct Answer: Option D

- **12.** If the A.M. of a and c is 16 and if a=8, then the G.M. of a and c is
 - A) $8\sqrt{3}$
 - B) $6\sqrt{3}$
 - c) $5\sqrt{3}$
 - D) $4\sqrt{3}$
 - E) $2\sqrt{3}$

Correct Answer: Option A

- **13.** If ${}^{n}P_{5} = 42^{n}P_{3}$ then n is equal to
- A) 3
- **B**) 5
- **c**) 7
- **D**) 12
- E) 10

- The number of arrangements of the letters of the word INDEPENDENCE such that the first letter is I and the last letter is P, is
- A) 12400
- B) 12420
- c) 12440
- **D**) 12600
- E) 12620

- 15. If four coins are tossed, then the number of possible ways of getting 2 or 3 heads, is
 - A) 12
- **B**) 10
- **c**) 8
- **D**) 6
- E) 4

Correct Answer: Option B

- **16.** The value of $\frac{{}^5C_r}{{}^6C_r}$ when the numerator and denominator take their greatest value, is
 - **A**) 2
 - **B**) $\frac{1}{2}$
 - **C**)
 - **D**) $\frac{5}{6}$
 - **E**) $\frac{6}{5}$

Correct Answer: Option B

- **17.** If $\left(1+x-2x^2\right)^6=1+a_1x+a_2x^2+\ldots+a_{12}x^{12}$ then the sum $a_2+a_4+a_6+\ldots+a_{12}$ has the value
 - **A**) 3'
 - **B**) 32
 - **c**) 33
 - **D**) 63
 - E) 64

- **18.** If $A = \begin{bmatrix} 5 & 2 & x \\ y & 2 & -3 \\ 4 & t & -7 \end{bmatrix}$ is a symmetric matrix, then the values of x, y and t, respectively, are
 - **A**) 4,2,3
 - **B**) 4,2,-3
 - C) 4,2,-7
 - D) 2,4,-7
- E) 4,3,2

19. If
$$A = \begin{bmatrix} 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 16 & 0 \\ 5 & 1 \end{bmatrix}$ and if $A^2 = B$ then the value X is equal to

- A) 2
- **B**) 3
- c) 4
- **D**) 5
- E) 6

Correct Answer: Option C

20. If
$$\alpha + \beta + \gamma = 0$$
, then
$$\begin{vmatrix} e^{\alpha} & e^{2\alpha} & e^{3\alpha} - 1 \\ e^{\beta} & e^{2\beta} & e^{3\beta} - 1 \\ e^{\gamma} & e^{2\gamma} & e^{3\gamma} - 1 \end{vmatrix} =$$

- A) e^{-1}
- **B**) *e*
- c) e^2
- D) e^3
- **E**) (

Correct Answer: Option E

- **21.** If the points (2,-3),(x,1) and (0,5) are collinear, then the value of x is
 - A) 2
- **B**) -2
- c) -1
- D) 1
- **E**) 0

Correct Answer: Option D

- **22.** If x satisfies the inequality $\frac{x-3}{x-5} > 3$ then x lies in the interval
 - A) (3,8)
 - B) (0,5)
 - (5,6)
 - D) $(-\infty,3)$
 - E) (5,8)

Correct Answer: Option C

23. The solution set of the inequation $\left| \frac{1}{x} - 2 \right| < 4$ is

- **A)** $\left(-\infty, \frac{-1}{2}\right) \cup \left(\frac{1}{6}, \infty\right)$
- $\mathbf{B}) \qquad \left(-\infty, \frac{-1}{2}\right)$
- **c**) $\left(\frac{1}{6},\infty\right)$
- **D**) $\left(-\infty,\frac{1}{6}\right)\cup\left(\frac{1}{2},\infty\right)$
- E) $(-\infty, -\infty)$

- **24.** If $\cos x = \frac{4}{5}$, where $x \in \left[0, \frac{\pi}{2}\right]$, then the value of $\cos\left(\frac{x}{2}\right)$ is equal to
- A) $\frac{1}{\sqrt{10}}$ B) $\frac{-1}{\sqrt{10}}$ C) $\frac{3}{\sqrt{10}}$ D) $\frac{\sqrt{3}}{1}$

Correct Answer: Option C

- The value of $\sin \frac{5\pi}{12} sin \frac{\pi}{12}$ is equal to **25**.
 - A)
 - B) $\frac{1}{4}$ C) $\frac{1}{2}$

 - $\mathbf{D}) \quad \frac{\sqrt{3}}{2}$
 - E)

- $26. \quad \frac{1-\sin^6\theta-\cos^6\theta}{\cos^22\theta}=$
 - A) $\frac{1}{4}tan^22\theta$
 - B) $\frac{1}{2}tan^22\theta$

 - c) $\frac{3}{2}tan^{2}2\theta$ D) $\frac{3}{4}tan^{2}2\theta$
 - $tan^22\theta$

- **27.** If $\frac{cosA}{cosB} = \alpha$, then $\frac{\alpha + 1}{\alpha 1}$ is equal to
 - **A**) $\cot\left(\frac{A+B}{2}\right)\cot\left(\frac{A-B}{2}\right)$
 - **B**) $-\cot\left(\frac{A+B}{2}\right)\tan\left(\frac{A-B}{2}\right)$
 - **C**) $-\tan\left(\frac{A+B}{2}\right)\cot\left(\frac{A-B}{2}\right)$
 - **D**) $-\cot\left(\frac{A+B}{2}\right)\cot\left(\frac{A-B}{2}\right)$
 - **E**) $-\cot\left(\frac{A+B}{2}\right)$

Correct Answer: Option D

- **28.** If $tan^{-1}2x + tan^{-1}3x = \frac{\pi}{4}$, then the value of x is equal to
 - **A)** $\frac{1}{6}$
 - **B**) $\frac{1}{4}$
 - **c**) $\frac{1}{3}$
 - **D**) $\frac{1}{2}$
 - E) 1

Correct Answer: Option A

- **29.** The domain of the function $f(x) = cos^{-1} ([x])$ (where [x] denotes the greatest integer function) is
 - **A**) [-1,2]
 - B) [-1,2)
 - **c**) (-2,2)
 - **D**) (-2,1)
 - E) (-1,1)

- **30.** If $\sin^{-1}\left(\frac{3\sin 2\alpha}{5+4\cos 2\alpha}\right) = \frac{\pi}{2}$, then $3\sin 2\alpha 4\cos 2\alpha$ is equal to
 - **A**) 3
 - **B**) 6
 - **c**) 4
- D) 1
- **E**) 5

- If the angle between two lines is $\frac{\pi}{4}$ and the slope of one of the lines is $\frac{1}{2}$, then the slope of other line is
- $3 or \frac{-1}{3}$ A)
- $2 or \frac{-1}{2}$
- 1 or -1 C)
- -3 or 2 D)
- $3 or \frac{1}{2}$ E)

Correct Answer: Option A

- If a straight line passes through the points $\left(\frac{-1}{2},1\right)$ and $\left(1,2\right)$, then its y-intercept is 32.
 - A)
 - 3 B)
 - C)
 - D)
 - E)

Correct Answer: Option E

- If the base of an equilateral triangle is along the straight line 2x-y=1 and the opposite vertex is (-1,2), then the length of the side of the triangle is 33.
- $\frac{20}{3}$ units A)
- $2\sqrt{\frac{5}{3}}$ units
- c) $\frac{\sqrt{20}}{3}$ units D) $\frac{2}{\sqrt{15}}$ units
- $\sqrt{\frac{3}{20}}$ units

- A circle passes through (4,0) and (0,2) with centre on the y-axis. The radius of the circle is 34.
- A)
- 10 B)
- 15 C)
- D) 20
- 25 E)

- **35.** If the length of major axis of an ellipse is twice the length of minor axis, then its eccentricity is equal to
- **A)** $\frac{\sqrt{2}}{3}$
- $\mathbf{B}) \quad \frac{\sqrt{3}}{2}$
- **c**) $\frac{1}{\sqrt{2}}$
- $\mathbf{D}) \quad \frac{2}{3}$
- $\mathbf{E}) \quad \frac{2\sqrt{2}}{3}$

Correct Answer: Option B

- **36.** The lengths of the transverse axis and conjugate axis of the hyperbola $\frac{x^2}{9} \frac{y^2}{25} = 1$ respectively, are
- **A**) 3,5
- B) 4,5
- **c**) 6,10
- **D**) 9,25
- **E**) 6,5

Correct Answer: Option C

- **37.** The equation of the directrix of the parabola $(x-1)^2 = 2(y-2)$ is
 - A) 2y 3 = 0
 - B) 2y + 3 = 0
 - c) 3y 2 = 0
 - y + 2 = 0
 - E) 2x 1 = 0

- **38.** The vectors $-\hat{i} + \frac{1}{4}\hat{j} + 2\hat{k}$ and $\hat{i} + \frac{1}{4}\hat{j} + 2\hat{k}$, are the adjacent sides of a parallelogram. The area of the parallelogram is
- **A)** $\frac{\sqrt{65}}{4}$
- B) $\sqrt{65}$
- **c**) $\sqrt{\frac{65}{2}}$
- **D**) $\frac{\sqrt{65}}{2}$
- **E**) $\frac{\sqrt{65}}{3}$

- **39.** Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$. If $\vec{a} \times \vec{b}$ is a unit vector, then the angle between a \vec{a} and \vec{b}
 - A) $\frac{\pi}{3}$
 - $\mathsf{B}) \quad \frac{\pi}{4}$
 - C) $\frac{\pi}{6}$
 - **D**) $\frac{\pi}{2}$
 - E) $\frac{3\pi}{4}$

Correct Answer:-Question Cancelled

- **40.** The projection of the vector $\vec{a} = 3\hat{i} \hat{j} 2\hat{k}$ on $\vec{b} = \hat{i} + 2\hat{j} 3\hat{k}$ is
- **A)** $\frac{\sqrt{14}}{2}$
- B) $\frac{14}{\sqrt{2}}$
- c) $\sqrt{14}$
- D) $14\sqrt{2}$
- E) $2\sqrt{14}$

Correct Answer: Option A

- **41.** If $|\overrightarrow{a}| = 4$ and $-1 \le \lambda \le 3$, then $|\lambda \overrightarrow{a}|$ lies in the interval
 - **A**) [1,4]
 - **B**) [1,3]
 - c) [4,14)
 - D) (3,12)
 - E) [4,12]

Correct Answer:-Question Cancelled

- Question 42: The angle between the lines $\vec{r} = (3\hat{\imath} + 2\hat{\jmath} 4\hat{k}) + \lambda(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$ and $\vec{r} = (5\hat{\imath} 2\hat{\jmath}) + \mu(3\hat{\imath} + 2\hat{\jmath} + 6\hat{k})$ is
 - $A) \qquad \cos^{-1}\left(\frac{9}{13}\right)$
 - **B**) $\cos^{-1} \left(\frac{3}{19} \right)$
 - **C**) $\cos^{-1}\left(\frac{19}{21}\right)$
 - **D**) $\cos^{-1} \left(\frac{13}{17} \right)$
 - **E**) $\cos^{-1}\left(\frac{3}{17}\right)$

The equation of line joining the points (-3,4,11) and (1,-2,7) is

A)
$$\frac{x+3}{2} = \frac{y-4}{3} = \frac{z-11}{4}$$

B)
$$\frac{x+3}{-2} = \frac{y-4}{3} = \frac{z-11}{2}$$

c)
$$\frac{x+3}{-2} = \frac{y+4}{3} = \frac{z+11}{4}$$

D)
$$\frac{x+3}{2} = \frac{y+4}{-3} = \frac{z+11}{2}$$

E)
$$\frac{x+3}{-2} = \frac{y-4}{-3} = \frac{z-11}{-4}$$

Correct Answer: Option B

The lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z+10}{8}$ and $\frac{x-4}{1} = \frac{y+3}{k} = \frac{z+1}{7}$ are coplanar. Then the value of 44

- A) 0
- -2 B)
- C) 2
- 4 D)
- E) -4

Correct Answer: Option E

Which one of the following points lies on the line

- $\vec{r} = (\hat{i} + 2\hat{j} 3\hat{k}) + t(4\hat{i} + 5\hat{j} 7\hat{k}), t \in \mathbb{R}?$ **45**.
- (9,12,-15)A)
- (9,15,12)B)
- (12,9,-17)
- (9,12,-17)D)
- (-9, -12, 17)E)

Correct Answer: Option D

If the mean of 12+x , 17+x , 25+x , 34+x is 22 then the mean of 38+x , 42+x, 52+x , 60+x is

- 42 A)
- 22 B)
- 48 C)
- D) 46
- E) 50

Correct Answer: Option C

The standard deviation of 3, 8, 6, 10, 12, 9, 11, 10, 12, 7 is 2.71. The standard deviation of 47. 30, 80, 60, 100, 120, 90, 110, 100, 120, 70 is

- 2.17 A)
- 0.271 B)

- **c**) 27.1
- **D**) 271
- E) $2.71\sqrt{10}$

- **48.** If *A* and *B* are mutually exclusive events and $P(B)\frac{1}{5}$, $P(A \cup B) = \frac{13}{35}$, then P(A) is equal to
- **A)** $\frac{1}{35}$
- **B**) $\frac{3}{35}$
- **c**) $\frac{1}{7}$
- **D**) $\frac{6}{35}$
- **E**) $\frac{1}{5}$

Correct Answer: Option D

- **49.** If *A* and *B* are two independent events and P(A') = 0.8, P(B) = 0.6, then $P(A \cup B)$ is equal to
 - A) 0.86
 - **B**) 0.8
 - **c**) 0.68
 - **D**) 0.52
 - E) 0.48

Correct Answer: Option C

- **50.** $\lim_{x \to 1} \frac{(x + x^2 + x^3 + x^4 + x^5) 5}{x 1} =$
- **A**) 5
- **B**) 12
- **c**) 14
- **D**) 0
- E) 15

- **51.** $\lim_{x \to 0} \frac{\sin 2x + 3x}{4x + \sin 6x} =$
- A)
- B) $\frac{1}{4}$
- **c**) $\frac{1}{2}$
- D) 2
- **E**) 3

52. The domain of
$$f(x) = \sqrt{|x| - 1} + \sqrt{4 - |x|}$$
 is

- A) $[-4, -1] \cup (1, 4)$
- B) $(-4, -1) \cup (1, 4)$
- c) [-4, -1]
- D) $[-4, -1] \cup (1, 4)$ E) $[-4, -1] \cup [1, 4]$

Correct Answer: Option E

53. The range of
$$f(x) = sinx + cosx + 3$$

A)
$$\left[-1 + \sqrt{3}, 1 + \sqrt{3} \right]$$

B)
$$\left[-\sqrt{2} + 3, \sqrt{2} + 3 \right]$$

c)
$$\left[-\sqrt{3} + 3, 3 + \sqrt{3} \right]$$

D)
$$\left[-\sqrt{2} - 3, 2 + \sqrt{3} \right]$$

E)
$$\left[-2 + \sqrt{3}, 2 + \sqrt{3} \right]$$

Correct Answer: Option B

54. If
$$F(x) = -\sqrt{9-x^2}$$
, then $\lim_{x \to 1} \frac{(x)-(1)}{x-1} =$ is equal to

- A)
- B)
- c) $\frac{-1}{2\sqrt{2}}$
- D)
- E)

Correct Answer: Option D

55. If
$$log_2 y = x$$
, then $\frac{dy}{dx}$ is equal to

- A) $2^x \log_e 2$
- B) 2^x
- c) x^2
- D) 2x
- E)

The derivative of y = (x-1)(2x-1)(3-x)(4-x) at $x = \frac{1}{2}$ is equal to

- A)
- B) $\frac{-35}{4}$ C) $\frac{-35}{2}$ D) $\frac{35}{4}$ E) $\frac{35}{2}$

Correct Answer: Option B

57. If
$$f(x) = |\cos x - \sin x|$$
, then $f'(\frac{\pi}{6})$ is equal to

- **A)** $\frac{-(\sqrt{3}+1)}{2}$
- **B**) $\frac{(\sqrt{3}+1)}{2}$

- c) $\frac{\sqrt{3}}{2}$ D) $\frac{2}{\sqrt{3}}$ E) $\frac{2}{\sqrt{3}+1}$

Correct Answer: Option A

Let $f:(0,\infty)\to R$ and $F(x)=\int_0^x f(t)dt$. If $F(x)=x^2(1+x)$, then f(2) is 58.

- -4 A)
- B)
- -16 C)
- 16 D)
- 12 E)

Correct Answer: Option D

If $f(x) = |x^2 - 1|$, then $f'(\frac{3}{2})$ is equal to 59.

- A)
- B)
- c) 4
- D)
- E)

- **60.** A critical point of the function $f(x) = \frac{x^3}{3} + 3x^2 7x$, is
 - **A**) $\left(1, \frac{-11}{3}\right)$
 - **B**) (0,0)
 - **C**) $\left(-1, \frac{29}{3}\right)$
 - **D**) $\left(2, \frac{2}{3}\right)$
 - **E**) $\left(-2, \frac{70}{3}\right)$

- **61.** The function $f(x) = 2x^3 + 9x^2 + 12x 1$ is decreasing in the interval is
 - A) (-1,1)
- B) (-3,1)
- C) (-2,-1)
- **D**) [-2,1]
- E) (-1,3)

Correct Answer: Option C

- The radius of a right circular cylinder is increasing at the rate of 2 cm/s and its height is decreasing at the rate of 3 cm/s. The rate of change of volume when radius is 4 cm and height 6 cm, is (in cm³/s)
- A) 24π
- **в**) 28π
- c) 42π
- D) 44π
- **E**) 48π

Correct Answer : Option E

- **63.** The sum of two positive numbers is 12. If the sum of whose square is minimum, then the numbers are
 - **A**) 3,9
 - **B**) 4,8
 - **c**) 5,7
 - **D**) 6,6
 - E) 2,10

- **64.** $\int \frac{dx}{\sqrt{x} + \sqrt{x-2}}$ is equal to
- A) $\frac{1}{2} \left(x^{3/2} (x-1)^{3/2} \right) + C$
- B) $\frac{1}{3} \left(x^{3/2} (x-2)^{3/2} \right) + C$

c)
$$\frac{1}{3}$$
 $\left(x^{2/3} - (1-x)^{2/3}\right) + C$

D)
$$\frac{1}{2} \left(x^{2/3} - (1-x)^{2/3} \right) + C$$

E)
$$\frac{1}{3} \left(x^{2/3} - (x-2)^{2/3} \right) + C$$

65.
$$\int \frac{dx}{\cos x\sqrt{2\sin 2x}} =$$

A)
$$\frac{1}{2}\sqrt{tanx} + C$$

B)
$$\sqrt{tanx} + C$$

c)
$$2\sqrt{tanx} + C$$

D)
$$4\sqrt{tanx} + C$$

E)
$$3\sqrt{tanx} + C$$

Correct Answer: Option B

66. If
$$f'(x) = 3x^2 - \frac{2}{x^3}$$
 and $f(1) = 0$, then $f(x) = 0$

A)
$$x^2 + \frac{1}{x^3} + 1$$

B)
$$x^3 + \frac{1}{x^2} + 1$$

c)
$$x^3 + \frac{1}{x^2} + 2$$

D)
$$x^3 + \frac{1}{x^2} - 2$$

E)
$$x^3 + \frac{1}{x^2} - 1$$

Correct Answer: Option D

$$\textbf{67.} \quad \int \left[\begin{array}{c} \frac{1}{\log x} - \frac{1}{(\log x)^2} \end{array} \right] dx =$$

A)
$$\log x + C$$

B)
$$x log x + C$$

c)
$$\frac{\log x}{x} + C$$

c)
$$\frac{\log x}{x} + C$$

D) $\frac{x}{\log x} + C$

E)
$$x + log x + C$$

68.
$$\int \sqrt{x^2 + 2x + 3} \, dx =$$

A)
$$(x+1)\sqrt{x^2+2x+3} + \log |(x+1)+\sqrt{x^2+2x+3}| + C$$

B)
$$\frac{x+1}{2}\sqrt{x^2+2x+3} - \log|(x+1)+\sqrt{x^2+2x+3}| + C$$

C)
$$\frac{x+1}{2}\sqrt{x^2+2x+3} - \frac{1}{2}\log\left|(x+1) - \sqrt{x^2+2x+3}\right| + C$$

D)
$$\frac{x+1}{2}\sqrt{x^2+2x+3} + \log\left|(x+1)+\sqrt{x^2+2x+3}\right| + C$$

E)
$$\frac{x+1}{2}\sqrt{x^2+2x+3} + \frac{1}{2}\log|(x+1)-\sqrt{x^2+2x+3}| + C$$

69.
$$\int_{3}^{5} \frac{e^{(1+x^2)}}{e^{(1+x^2)} + e^{(1+(8-x)^2)}} dx =$$

- A) 5
- B) 1
- c) 2
- **D**) 3
- **E**) 0

Correct Answer: Option B

70.
$$\int_{-a}^{a} \left(x^3 + x \cos^2 2x + \tan^3 x + 3 \right) dx =$$

- A) 2a
- **B**) 3a
- **c**) 4a
- **D**) 6a
- E) a

Correct Answer: Option D

- **71.** The area bounded by the curve $y = 3x x^2$ and the x- axis is
- A) $\frac{21}{2}$ sq.units
- B) $\overline{18}$ sq.units
- c) $\frac{27}{2}$ sq.units
- **D**) 9 sq.units
- E) $\frac{9}{2}$ sq.units

Correct Answer: Option E

- **72.** Area of the region bounded by y = |x| and x = 4 is
 - A) 4 sq.units
 - B) 6 sq.units
 - c) 8 sq.units
 - D) 12 sq.units
 - E) 13 sq.units

73. The order and degree of differential equation $\sqrt[5]{1 + \frac{d^2y}{dx^2}} = \sqrt[4]{\left(y + \left(\frac{dy}{dx}\right)^5\right)}$, respectively, are

- **A**) 2,5
- **B**) 2,4
- **c**) 2,3
- **D**) 4,5
- E) 4,4

Correct Answer: Option B

74. The order and degree of differential equation $x \frac{dy}{dx} + y = e^x$ is

- $A) \quad y = \frac{e^x}{x} + Cx$
- B) $y = xe^x + Cx$
- $c) \quad y = \frac{e^x}{x} + C$
- $\mathbf{D}) \quad y = \frac{e^x}{x} + \frac{C}{x}$
- $E) \quad y = \frac{1}{x} + Cxe^x$

Correct Answer:-Question Cancelled

Let z=ax+by, where a,b>0. The corner points of the feasible region determined by the system of linear constraints are(0,10), (5,5), (15,15), (0, 20). Condition on a and b so that the minimum of z occurs at both the points (15,15) and (0, 20), is

- A) a = b
- B) 2a = b
- c) a=2b
- D) 3a = b
- E) a = 3b

Correct Answer: Option D

76. A distance of 50 cm is measured using a metre stick with the smallest division 1 mm. The percentage error involved in the measurement is

- A) 2%
- **B**) 0.5%
- **c**) 0.2%
- **D**) 0.1%
- E) 5%

Correct Answer: Option C

77. The value of (200 m + 200 mm) with regard to significant figures is

- **A)** 200.2 *m*
- B) 200 m
- **c**) 202 m
- **D**) 200.200 m
- E) 202.2 m

- **78.** The angle subtended by the vector $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ with the *y*-axis is
- **A**) $\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$
- $\mathbf{B} \, \mathbf{j} \qquad \sin^{-1} \left(\frac{1}{\sqrt{3}} \right)$
- C) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
- $\mathbf{D}) \quad \sin^{-1} \! \left(\frac{2}{\sqrt{3}} \right)$
- E) $\frac{\pi}{2}$

Correct Answer: Option C

- **79.** When a body with its initial velocity non-zero, moves with constant retardation, the velocity-time graph is
- A) an oblique straight line with positive slope
- B) a straight line parallel to time axis
- c) a straight line parallel to velocity axis
- **D**) an oblique straight line with negative slope
- E) a curve with bend upwards

Correct Answer: Option D

- 80. If two bodies are projected with angles of projection θ and (90 θ) with the same speed, then the ratio between their times of flight T_1 and T_2 is
 - A) $\cot \theta$
 - B) $\cos \theta$
 - \mathbf{c}) sec θ
- \mathbf{D}) $\sin \theta$
- E) $tan \theta$

Correct Answer : Option E

- 81. A machine gun having mass 5 kg fires 40 gram bullet at the rate of 25 bullets per minute at a speed of 300 ms^{-1} . The force required to keep the gun in position is
 - **A**) 7 N
 - B) 4N
 - **C**) 2.5 N
 - **D**) 10 N
 - E) 5N

- 82. A force $\vec{F} = \hat{i} + 2\hat{j} 2\hat{k}$ applied on a body, accelerates the body with 2 ms⁻². Then the mass of the body is
 - **A**) 0.5 kg
 - **B**) 10 kg
 - **c**) 5 kg
 - **D**) 1.5 kg
 - **E**) 7 kg

- **83.** A body moving with kinetic energy *E* is stopped by applying a stopping force *F*. The stopping distance is
- A) FE
- $\mathbf{B}) \qquad \frac{F}{E}$
- C) $\frac{\overline{E}}{F}$
- D) F^2E
- E) FE^2

Correct Answer: Option C

- **84.** The work done by the applied force in changing the elongation of a spring of spring constant K, from x_1 to x_2 is
- A) $\frac{1}{2}K(x_2^2-x_1^2)$
- **B**) $\frac{1}{2}Kx_1x_2$
- c) $\frac{1}{4}K(x_1^2-x_2^2)$
- $\mathbf{D}) \quad \frac{1}{4} K x_1 x_2$
- E) $\frac{1}{2}K(x_1^2x_2^2)$

Correct Answer: Option A

- 85. In the uniform circular motion of a particle, the point about which the angular momentum of the particle is conserved is
- A) on the circumference of the circle
- B) inside the circle
- c) outside the circle
- **D**) the centre of the circle
- E) anywhere on the rotation axis

- **86.** A wheel of moment of inertia $4 \times 10^{-3} \ kgm^2$ rotates with an angular speed of 25 rev. s⁻¹. The torque (in *Nm*) required to stop it in 10s is
 - A) $4\pi \times 10^{-4}$
- B) $2\pi \times 10^{-2}$

- c) $6\pi \times 10^{-3}$
- D) $\pi \times 10^{-1}$
- E) $3\pi \times 10^{-5}$

- 87. A force \vec{F} acting on a particle, having position vector \vec{r} exerts a torque $\vec{\tau}$ about the origin on the particle. Then the angle between \vec{r} and $\vec{\tau}$ is
 - **A**) 60°
 - B) 45°
 - **c**) 0°
 - **D**) 90°
 - E) 180°

Correct Answer: Option D

- **88.** The gravitational potential energy between two bodies each of mass 1 kg kept at a distance of 1 *m* is (G Gravitational constant)
 - \mathbf{A}) G
 - B) -G
 - c) $\frac{-G}{2}$
 - D) $\frac{G}{2}$
 - E) $\frac{-6}{4}$

Correct Answer: Option B

- 89. If the acceleration due to gravity on the surface of a planet of mass m and radius r is g, then the escape velocity of a body from the surface of the planet is
- A) $\sqrt{2g\eta}$
- $\mathbf{B}) \quad \sqrt{\frac{2g}{r}}$
- c) $\sqrt{g\gamma}$
- D) gr^2
- E) $2gr^2$

- **90.** The wall between two thermal systems that allows the flow of heat from one to another to bring thermal equilibrium is called
- A) adiabatic wall
- B) insulated wall
- c) diathermic wall
- **D**) semiconducting wall
- E) non-conducting wall

- 91. If dV is the change in volume of a liquid of density ρ under the pressure P, then the pressure energy per unit mass of the liquid is
- A) PdV
- $\mathbf{B} \, \mathbf{)} \quad \frac{PdV}{\rho}$
- C) $\frac{PdV}{\rho^2}$
- $\mathbf{D}) \quad \frac{P}{\rho}$
- E) $P\rho$

Correct Answer: Option D

- If F_1 is the force exerted by air on a small piston of area of cross-section A_1 in a car lift , then the force F_2 realised on the second piston of area of cross-section A_2 due to the transfer of pressure is
- A) $F_1 \frac{A_1}{A_2}$
- $\mathbf{B}) \quad F_1 \frac{A_2}{A_1}$
- c) $F_1\sqrt{(A_1A_2)}$
- \mathbf{p}_1 $F_1\sqrt{\frac{A_1}{A_2}}$
- $\mathbf{E}) \qquad \sqrt{\frac{A_1}{A_2}}$

Correct Answer: Option B

- 93. Find the mismatch pair in the thermodynamic process
 - A) Isothermal: Absorption or emission of heat
 - B) Isobaric : Pressure constantC) Isochoric : Volume constant
 - **D**) Irreversible: Loss of heat
 - E) Adiabatic: Heat exchange

Correct Answer: Option E

- **94.** In a Carnot engine if the ratio of the heat rejected to the sink to the heat absorbed from the source is 1 : 4, then the efficiency of the engine is
- A) 75 %
- B) 60 %
- **c**) 50 %
- D) 25 %
- E) 45 %

- 95. The mean free path of a gas is directly proportional to its
 - A) pressure
 - B) density
 - c) molecular diameter
 - **D**) absolute temperature
 - **E**) square of molecular diameter

- **96.** The condition for real gases to obey the ideal gas equation PV = RT is that the gases should be at
 - A) high pressure
 - B) low temperature
- **c**) low pressure and low temperature
- **D**) high pressure and low temperature
- **E**) low pressure and high temperature

Correct Answer: Option E

- 97. A particle is executing simple harmonic motion with A and B as its extreme positions and O as its mean position. If a and v represent the acceleration and velocity, then
- A) at A, $\alpha = 0$
- \mathbf{B}) at \mathbf{B} , a=0
- c) at O, a is maximum
- **D**) at O, a and v are maximum
- E) at O, $\alpha = 0$

Correct Answer: Option E

- **98.** The equation for the displacement x (in m) of a particle executing simple harmonic motion in SI unit is $x(t) = 5\cos 4 \pi t$ Its displacement after 3 s is
 - **A)** 2 m
 - **B**) 5 m
 - **c**) 3 m
 - **D**) 4 m
 - **E**) 10 m

Correct Answer: Option B

- **99.** Two sound sources produce 24 beats in 3 s . The difference between the two frequencies of the sources is
 - A) 2
 - B) 4
 - c) 8
- D) 12
- **E**) 3

100. Electric potential due to an electric dipole on its axis at a distance r from its centre is inversely proportional to

- **A**) γ
- B) r^3
- c) r^2
- D) r^{-2}
- E) r^{-1}

Correct Answer: Option C

101. If the potential difference between two conductors separated by a distance of 2 cm is 4×10^3 V then the electric field between them (in Vm^{-1}) is

- A) $8 \times 10^3 Vm^{-1}$
- B) $4 \times 10^5 Vm^{-1}$
- c) $8 \times 10^5 Vm^{-1}$
- D) $2 \times 10^3 Vm^{-1}$
- E) $2 \times 10^5 Vm^{-1}$

Correct Answer: Option E

102. The electrostatic energy density of the electric field E in a capacitor is directly proportional to

- A) E^2
- B) E
- C) \sqrt{E}
- D) E^3
- E) E^{-2}

Correct Answer: Option A

103. In an electrolyte, the mobile charge carriers are

- A) electrons only
- B) negative ions only
- c) positive ions only
- **D**) negative and positive ions
- E) electrons and positive ions

Correct Answer: Option D

104. If both the length and area of cross-section of a linear conductor are halved, its resistance would

- A) be doubled
- B) remain unchanged
- c) be halved
- **D**) be tripled
- E) be quadrupled

- **105.** The power dissipated in the transmission cables of 0.03 Ω resistance, when 11 kW of power is transmitted at 220 V is
- **A)** 0.025 kW
- **B**) 0.050 kW
- **c**) 0.075 kW
- **D**) 1.075 kW
- E) 1.025 kW

Correct Answer: Option C

- 106. If the horizontal and the vertical component of earth's magnetic field are, respectively, 0.26 G and (0.26) $\sqrt{3}G$, then the dip angle is
- \mathbf{A}) 0°
- B) 30°
- C) 45°
- D) 60°
- E) 90°

Correct Answer: Option D

- **107.** The maximum torque experienced by a rectangular coil carrying a steady current I placed in a uniform magnetic field B is (l- length; A area of cross-section)
- A) IBA
- B) IlB
- c) IBA^2
- D) IlB^2
- E) Il^2R

Correct Answer: Option A

- **108.** In a television, the required magnetic field is produced by a/an
 - A) toroid
 - B) electromagnet
- c) permanent magnet
- **D**) circular coil
- E) solenoid

Correct Answer:-Question Cancelled

- **109.** If the flux linked with the coil of area of cross-section 0.5 m 2 placed in a magnetic field of 16 T is 4 Wb, then the angle between the magnetic field and the area vector of the coil is
- \mathbf{A}) 0°
- B) 30°
- c) 45°
- D) 60°
- E) 90°

110. The self-inductance of a coil does not depend on

- A) its radius
- B) its number of turns
- c) its area of cross-section
- **D**) the current through it
- E) permeability of the medium

Correct Answer: Option D

111. Which one of the following proves the transverse nature of electromagnetic waves?

- A) Interference of light
- B) Dispersion of light
- c) Polarization of light
- **D**) Photoelectric effect
- E) Diffraction of light

Correct Answer: Option C

112. If the angle of a prism A is equal to the angle of minimum deviation, then the refractive index of the material of the prism is

- A) $2\cos\frac{A}{2}$
- B) $cos\frac{A}{2}$
- c) 2cosA
- D) cosA
- E) $sin\frac{A}{2}$

Correct Answer: Option A

113. According to Huygens Principle, a wavefront is

- A) a single ray of light
- B) a surface of constant phase
- c) a surface of varying phase
- **D**) a random arrangement of waves
- E) a region where crests and troughs overlap

Correct Answer: Option B

In Young's experiment, the wavelength of light is 600 nm, the slit separation is 0.5 mm,

114. and the screen is 2 m away. The fringe width of the interference pattern with the same set up becomes 3 times if the wavelength of light used is

- A) tripled
- B) doubled
- c) halved
- **D**) made one-third

E) made one-sixth

Correct Answer: Option A

115. If the frequency of the incident radiation f increases above the threshold frequency f_0 of a photo-sensitive material, then the stopping potential

- A) increases linearly with f
- **B**) decreases linearly with f
- c) is independent of f
- D) increases with intensity of light
- E) decreases with intensity of light

Correct Answer: Option A

- 116. The emission of electrons from a metal by applying a very strong electric field is called
- A) photoelectric emission
- B) field emission
- c) thermionic emission
- **D**) beta emission
- E) gamma emission

Correct Answer: Option B

- **117.** The size of a nucleus is of the order of
 - A) $10^{-15}m$
 - B) $10^{-10}m$
 - c) $10^{-5}m$
 - $10^{-6}m$
 - E) $10^{10}m$

Correct Answer:-Question Cancelled

- 118. The radiations of extremely short wavelength are
- A) alpha rays
- B) beta rays
- c) gamma rays
- D) X rays
- E) ultra-violet rays

Correct Answer: Option C

- 119. The naturally occurring crystal which was used as a detector of radio waves is
- A) Ruby
- B) Galena
- c) silicon
- **D**) germanium
- E) zinc selenide

120. If n_h and n_e represent the concentrations of holes and electrons, respectively, then in a ptype semiconductor,

- A) $n_e = n_h$
- B) $n_e \gg n_h$
- c) $n_h \gg n_e$
- D) $n_e = 2n_h$
- E) $n_h + n_e = n_h n_e$

Correct Answer: Option C

121. 149 g of KCl is dissolved in 10 litres of an aqueous solution. The molarity of the solution is (molar mass of KCl = 74.5)

- **A**) 1M
- **B**) 0.1M
- c) 2 M
- **D**) 0.2M
- E) 0.002 M

Correct Answer: Option D

122. Which of the following statement is NOT true?

- A) The energies of the orbitals in the same subshell increases with increase in the atomic number
- B) The probability density function is zero on the plane where the two lobes touch each other.
- ${f c}$) The lower the value of (n+l) for an orbital, the lower is its energy.
- **D**) The total number of nodes is given by (n-1).
- The maximum number of electrons in the shell with principal quantum number n' is equal to n'

Correct Answer: Option E

123. Which of the following quantum numbers determines the orientation of the orbital?

- A) n
- B) l
- c) m_l
- D) m_s

both n

l and

Correct Answer: Option C

124. Which of the following statement is INCORRECT regarding f-block elements?

- A) The elements of the periodic table in which the last electron gets filled up in the f-orbital.
- B) The f-block elements are from atomic number 58 to 71 and from 90 to 103.
- c) Actinoid elements are radioactive.
- **D**) There are 28 f-block elements in the periodic table.

E) The outer electronic configuration of Actinoids is $(n-1)f^{1-14}(n-1)d^{0-1}ns^2$.

Correct Answer: Option E

125. The H-C-H bond angle in ethene is

- **A)** 117.6°
- B) 121°
- c) 110°
- **D**) 105°
- E) 119°

Correct Answer: Option A

126. For the process to occur under adiabatic conditions, the correct condition is

- A) $\Delta T = 0$
- B) $\Delta P = 0$
- \mathbf{c}) q = 0
- \mathbf{D}) $\mathbf{w} = 0$
- E) $\Delta U = 0$

Correct Answer: Option C

For the following gas phase decomposition, the magnitude of ΔH and ΔS is

127.

$$PCl_{5}(g) \stackrel{\triangle}{=\!=\!=\!=} PCl_{3}(g) + Cl_{2}(g)$$

- A) $\Delta H < 0$ and $\Delta S < 0$
- **B**) $\Delta H > 0$ and $\Delta S > 0$
- c) $\Delta H > 0$ and $\Delta S < 0$
- **D**) $\Delta H < 0$ and $\Delta S > 0$
- **E**) $\Delta H = 0$ and $\Delta S = 0$

Correct Answer: Option B

What is the value of Kc for the following equilibrium, if the value of Kp for the reaction at

128. 1000 K is 8.21 × 10^{-2} ? (R = 0.0821) $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$ at 1000 K.

- **A)** 10^{-3}
- $B) 10^{-8}$
- $c) 10^{-9}$
- $D) 10^{-10}$
- E) 10^{-5}

Correct Answer: Option A

129. Which of the following statement is true for the effect of catalyst in equilibrium?

- A) Lowers activation energy for forward reaction only.
- **B**) Lowers activation energy for reverse reaction only.

- c) When K is small catalyst has greater effect.
- **D**) It effects to equilibrium composition of reaction mixture.
- **E**) Lowers activation energy for forward and reverse reaction by same amount.

- 130. Which of the following is INCORRECT for the concept of reduction?
- A) Removal of oxygen

5/9/25, 4:18 PM

- B) Addition of hydrogen
- c) Addition of electron
- **D**) Decrease in oxidation number
- E) Removal of an electron

Correct Answer: Option E

The conductivity (k) of a decinormal solution of KCl is 0.012 ohm⁻¹ cm⁻¹. The **131.** resistance of a cell containing this solution was found to be 50 ohm at 298 K. The cell constant value is

- **A)** 0.02 cm^{-1}
- **B**) $0.5 \, \text{cm}^{-1}$
- $^{\circ}$ 0.8 cm⁻¹
- **D**) $0.1 \, \text{cm}^{-1}$
- E) 0.6 cm⁻¹

Correct Answer: Option E

When 1 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point **132.** of benzene by 0.20 K. The freezing point depression constant of benzene is 5 K kg mol^{-1} . The molar mass (g /mol) of the solute is

- **A**) 500
- **B**) 400
- c) 300
- **D**) 200
- E) 100

Correct Answer: Option A

- **133.** The pre-exponential factor in the Arrhenius equation is called as
- A) probability factor
- B) activation energy
- c) collision frequency
- **D**) reaction coordinate
- E) frequency factor

Correct Answer: Option E

134. In a first order reaction, $A \rightarrow \text{Products}$, the half-life period is found to be 10 minutes. The rate of the reaction in mol lit⁻¹ min⁻¹ at [A] = 0.1 mol lit⁻¹ is

- $0.693 \times 10^{-3} \text{ mol lit}^{-1} \text{ min}^{-1}$ A)
- $6.93 \times 10^{-3} \text{ mol lit}^{-1} \text{ min}^{-1}$ B)
- $69.3 \times 10^{-3} \text{ mol lit}^{-1} \text{ min}^{-1}$ C)
- $693.3 \times 10^{-3} \text{ mol lit}^{-1} \text{ min}^{-1}$ D)
- $6932 \times 10^{-3} \text{ mol lit}^{-1} \text{ min}^{-1}$ E)

The correct statement/s about ${\rm Cr}^{2\,+}$ and ${\rm Mn}^{3\,+}$ is/are [Atomic numbers of Cr = 24 and Mn = 25]

- (i) Cr²⁺ is a reducing agent
- **135.** (ii) Mn^{7 +} is an oxidising agent in acidic medium (iii) Both Cr^{2 +} and Mn^{3 +} exhibit d⁴ electronic configuration
 - (iv) The highest oxide of Mn $is Mn_3O_4$.
 - (v) Cr²⁺ and Mn³⁺ have the same magnetic moment as both have four unpaired electrons.
 - Only (i) A)
 - (i), (ii) and (iii) B)
 - C) (i), (iv) and (v)
 - (i) and (v) only D)
 - (i), (ii), (iii) and (v) E)

Correct Answer: Option E

136. Which of the following metal ion is diamagnetic?

- A) $7n^{2} +$
- Ni^2 + B)
- Co^{2} + C)
- Cu^{2} + D)
- $Mn^2 +$ E)

Correct Answer: Option A

Match the Column-I with Column-II.

Column-I (Catalyst)

(Column-II) Used in

- (a) $TiCl_4 + Al (CH_3)_3$
- (i) Oxidation of SO2 in the manufacture of H2SO4.
- **137.** (b) PdCl₂
- (ii) Hydrogenation of fats

(c) Fe

- (iii) Zeigler catalyst
- (d) Ni
- (iv) Wacker process
- (e) V₂O₅
- (v) Haber process
- (a)-(iii), (b)-(iv), (c)-(v), (d)-(ii), (e)-(i) A)
- (a)-(ii), (b)-(iv), (c)-(v), (d)-(iii), (e)-(i) B)
- (a)-(iii), (b)-(ii), (c)-(v), (d)-(iv), (e)-(i) C)
- D) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii), (e)-(v)
- (a)-(iii), (b)-(v), (c)-(iv), (d)-(ii), (e)-(i) E)

Correct Answer: Option A

138. The common oxidation state of the elements of lanthanoid series is

- **A**) +1
- B) +2
- c) +3
- D) +4
- E) +5

The complex ions $[NiCl_4]^2$ and $[Ni(CN)_4]^2$ differ by

139. (i) Magnetic moment

- (ii) Geometry
- (iii) Hybridisation of central metal ion
- (iv) Oxidation state of nickel

- **A**) (i), (ii) and (iv)
- B) (i), (ii) and (iii)
- c) (ii), (iii) and (iv)
- **D**) (ii) and (iii)
- **E**) (i), (ii), (iii) and (iv)

Correct Answer: Option B

Four complex ions are given in Column I and the colours of light absorbed are given in Column II. Match the correct answer from the codes given below.

140. Complex Colour of light absorbed (i) Blue

- (b) $[Cu (H_2O)_6]^{2+}$ (ii) Yellow
 - (c) [CoCl(NH₃)₅]²⁺ (iii) Blue green
 - (d) $[Co (NH_3)_6]^{3+}$ (iv) Red
- **A)** (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- **B**) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
- c) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
- ${f D}$) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)
- E) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Correct Answer: Option A

- 141. The number of $\alpha\,$ -hydrogens in tertiary butyl chloride, isopropyl chloride, ethyl chloride and methyl chloride are respectively
- **A)** 0, 1, 2 and 3
- **B**) 0, 3, 6 and 9
- **c**) 1, 3, 6 and 9
- **D**) 9, 6, 3 and 0
- **E**) 3, 6, 9 and 12

- **142.** The correct order of the rate of β -elimination reaction among the alkyl halides is
 - A) Secondary > Tertiary > Primary
 - B) Tertiary > Primary > Secondary
 - c) Tertiary > Secondary > Primary
 - **D**) Primary > Tertiary > Secondary
- E) Primary > Secondary > Tertiary

Alkyl iodides are normally prepared by the following reaction:

143. $CH_3CH_2CI + NaI \rightarrow CH_3CH_2I + NaCI$

This reaction is known as

- A) Wurtz reaction
- B) Wurtz-Fittig reaction
- c) Williamson synthesis
- **D**) Finkelstein reaction
- E) Etard reaction

Correct Answer: Option D

144. Which of the following is most reactive towards nucleophilic aromatic substitution?

$$c_1$$
 NO_2

E)
$$\bigvee_{NO_2}^{Cl}$$
 NO_2

Correct Answer : Option E

What is the major product of the following reaction?

$$C$$
) OH
 CH_3

146. Benzophenone and Acetophenone are distinguished by treating with

- A) Fehling's reagent
- B) Lucas reagent
- c) lodine and alkali
- D) Aqueous CrO3
- E) Tollens' reagent

Correct Answer: Option C

147. The product of the following reaction is $C_6H_5CHO + C_6H_5COCH_3 \xrightarrow{NaOH \ 293 \text{ K}}$

- A) $C_6H_5CH = CHCOC_6H_5$
- B) $C_6H_5COCH2C_6H_5$
- c) $C_6H_5CH = CHC_6H_5$
- D) $C_6H_5CH(OH)COC_6H_5$
- E) $C_6H_5COCOC_6H_5$

Correct Answer: Option A

148. Which of the following is the strongest acid?

- A) FCH₂COOH
- B) CF₃COOH
- c) NC-CH₂COOH
- D) Br-CH₂COOH
- E) CH₃COOH

Correct Answer: Option B

Choose the correct combinations for the column I with column II.

Column-I

(a) Benzenesulphonyl chloride

149. (b) Conversion of amide to amine

- (c) Conversion of primary amine to isocyanide
- (d) Diethylamine

- Column-II
- (i) Carbylamine reaction
- (ii) Secondary amine
- (iii) Hinsberg's reagent
- (iv) Hofmann's bromamide reaction

- A) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- B) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- **c**) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- **D**) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
- E) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)

150. Peptide on hydrolysis gives

- A) glucose
- B) fatty acids
- c) amino acids
- ${f D}$) ribose sugar, ${f H}_3{f PO}_4$ and base
- E) heterocyclic base and sugar